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Red OX :Focuses on the development of small organic molecules that undergo electron transfer
Photochemistry ~ and/or can be activated by light.

Reversible electron transfer Molecular redox switches Stabilization of radical species
- repolarization - redox sensing - complexation
- counterion manipulation A - ion exchange - subsequent reaction
- electrostatic control - functionalized materials - steric effect
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Photoactivatable compounds
- reversible photochemistry

- fluorescent dyes

- photo-click reactions



3a:R'=H, R?2=Me

3b: R'=H, R? =%-\
L®0(0H20H20)3CH3

Al nm

1A/ nm

—

300 400 500 600 300 400 500 600 700 800
Figure 3. Irradiation of 3a at 500 nm (top) and 3b at 625 nm (bottom) in aerated phosphate buffer solutions
(pH = 7.4). The spectra prior to (red line) and after (blue line) the irradiation are highlighted.
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J. Am. Chem. Soc. 2016, 138, 126-133.



> Introduction

LABOD I PY g BHAR R S S fR 57 F

Chem. Rev. 2020, 120, 13135-13272.

Y = SO,NH, CHNO

2nd Generation

® up to 95%!
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Previous work:
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» Result and Discussion

This work:
Table 1. Photophysical properties of BODIPY-cages in water.
Cargo. «--"" Pmmgéi?j"'ame Name Cargo R4 R, Charge
Name Amaxt® log £l Dgec® dgec™
AN-OH OH 5 o max g dec dec
Nzl 593 N S03
AN-Ac acetate \)—/ N= -2 AN-Ac 662 3.8 1x 104 0.63
]
. AN-OA oleate 4 '/N /
E AN-OA 674 3.3 4 x10° 0.08
i 2N s05 on MA-OA 682 4.3 4 x10° 0.08
k MA-OA oleate 1/; o« -1
./N NE-OA 696 4.2 6 x 10® 0.10
OH OH
NE-OA oleate e o« 0 Solvent Aexc, NE-OA MA-OA AN-OA AN-OH AN-Ac
[nm] Dn [%] Dr [%] ®n [%) On[%] || Dn[%]
DMSO 615 21 23 22 21 23
H.O 632 0.05 0.04 0.18 7 S
Scheme 1. Structures of developed BODIPY-cages. POPC 632 0.23 0.06* 1.5 8 6
*a compound did not penetrate liposomes
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Figure 1. Evolution of absorption (A) and emission (B) spectra upon illumination
of AN-Ac (c = 20 uM, V = 3.2 mL) with 632 nm light (photon flux: F(632) = 6.04
x 107 Einstein s-1) in water. Black, olive, and magenta lines correspond to 0,
7.5, and 66 h of irradiation, respectively. C: Photoreactive sites of AN-Ac and a
suggested scheme of its photodegradation, arrows depict the sites of

photocleavage.
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Figure 2. A: Proposed scheme of photorelease of OA from NE-OA. B: Evolution of absorption spectra of NE-OA upon irradiation with 632 nm light in aqueous solution. C:
Corresponding changes in absorbance at 700 nm (black), 585 nm (violet), 532 nm (orange) in time. D, E: Absorbance spectra of photoreaction products and evolution of
their molecular fraction calculated by fitting the data in panels B and C to NE-OA—NEox—NEdec reaction model (see Ch. S4 for details). F: Chromatograms of NE-OA

irradiated with 632 nm light for O (black), 2.2 (red), and 5.3 (blue) hours (UV-VIS-detector at 597 nm)
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Figure 3. Localization of caged OAs (red) in live HelLa cells A, = 633 nm, A,,,, = 650-700
nm. For NE-OA, green represents the plasma membrane tracker, A,, = 488 nm, A, =
495-555 nm. The scale bar is 10 pm.
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Figure 4. Ca?* signaling. A: Schematic representation of OA induced elevation in intracellular Figure S5-4: Response of HelLa C_ells expressing GPR40 to uncaging of NE-OA.
Ca?*level. B,C: Fluorescence of Fluo-4 calcium sensor before and after uncaging irradiation A, B) Fluorescence of Fluo-4 calcium sensor before and after uncaging.
(A, = 488 nm, A, = 500-550 nm). D: Normalized fluorescence intensity of Fluo-4 as a (pseudocolored using "fire” lookup table, scale bar is 10 uM). C) Dynamics of
function of time (grey: 5 individual cells; red: average) compared to controls in cells not normalized Fluo-4 fluorescence intensity from six individual cells (grey lines) and
transfected with GPR40 (blue) and cells with MA-OA analogue that cannot release OA upon the average trace (red) Aex = 488 nm, Aem = 500 — 550 nm. The red rectangle

irradiation (green) (see Ch. S5.2) shows the uncaging irradiation period (Airr = 633 nm)



