Literature Report V

pubs.acs.org/JACS Article

What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe?

Jagannath Kuchlyan, Lara Martinez-Fernandez, Mattia Mori, Krishna Gavvala, Stefano Ciaco, Christian Boudier, Ludovic Richert, Pascal Didier, Yitzhak Tor, Roberto Improta, and Yves Mély*

Thienoguanosine

Reporter: Jin Li

Date: 2020-09-30

The basic concept

碱基:是嘌呤和嘧啶的衍生物

核苷: 戊糖和碱基通过糖苷键连接而成的化合物。

Guanine

Uracil

Deoxyribose Ribose

核糖或脱氧核糖以及磷酸三种物质组成的化合物

DNA	Base	Deoxyribo-nucleoside	Deoxyribo-nucleotide	Chain Form
Adenine	NH ₂ N V N N V N N N	HO NH ₂	O-P-O-P-O-P-O-P-O-P-O-P-O-P-O-P-O-P-O-P	HO H
Guanine	NH NH	HO NH ₂		HO HH O=P-O- O-
Cytosine	NH ₂ N N H	HO HOH H	NH ₂	HO —
Thymine	NH NH	HO HO H	OOO	0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 +

Ribo-nucleotide **Chain Form** Ribo-nucleoside Base RNA Adenine Cytosine Uracil

Fluorescent nucleobase development

3

R = NMe₂: ^{5-EDMA}U

	HO OH HO	S N	2	thU	րc ⇔		ا الله الله		thU	
	sugar pucker		d (Å) ^a	ansition - solvent	$\lambda_{ m abs} \left(arepsilon ight)$	$\lambda_{ m em}\left(\Phi ight)$	$\Phi arepsilon$	τ	Stokes shift	polarity sensitivity ^c
A	C3′-endo	0.0521	0.157	water	341 (7.44)	420 (0.21)	1562	3.9	5950	68.9

	HO OH HO.	~ 1	2	ansition	thC		و الم		m _U	م م
		rmse	d (Å) ^a	-						
	sugar pucker	ribose	base	solvent	$\lambda_{\mathrm{abs}} \left(\varepsilon \right)$	$\lambda_{em}\left(\Phi\right)$	$\Phi arepsilon$	τ	Stokes shift	polarity sensitiv
$^{ m th}A$	C3'-endo	0.0521	0.157	water	341 (7.44)	420 (0.21)	1562	3.9	5950	68.9
				dioxane	345 (7.83)	411 (0.14)	1096	3.2	5080	
th C	C2'-endo	0.294	0.045	water	320 (4.53)	429 (0.41)	1857	15.2	8300	27.3
				dioxane	326 (4.21)	422 (0.01)	42	5.0	7550	

453 (0.46)

424 (0.50)

409 (0.41)

378 (0.04)

1909

2265

1296

140

14.8

13.0

11.5

1.0

9580

6890

8860

6690

107.2

80.8

321 (4.15)

333 (4.53)

304 (3.16)

304 (3.50)

0.0525

0.240

0.158

0.047

water dioxane

water

dioxane

C2'-endo

C1'-exo

th G

 $^{\text{th}}U$

Conquering 2-Aminopurine's Deficiencies: Highly Emissive Isomorphic Guanosine Surrogate Faithfully Monitors Guanosine Conformation and Dynamics in DNA

Marianna Sholokh,^{†,§} Rajhans Sharma,[†] Dongwon Shin,[‡] Ranjan Das,^{||} Olga A. Zaporozhets,[§] Yitzhak Tor,*^{,‡} and Yves Mély*^{,†}

a) Absorption (green dashed line) and emission spectra of thG at different excitation wavelengths: λ =283 nm (magenta line); λ =298 nm (blue); λ =320 nm (green); λ =345 nm (black); and λ =360 nm (orange). The emission spectra were normalized at their maxima. The normalized emission spectrum at λ exc=380 nm fully overlaps that at λ exc=360 nm and is not shown.

b) Deconvoluted emission spectrum of thG, obtained at λ ex=283 nm.
 c) Deconvolution of the absorption spectrum of thG (black line) in its two ground-state forms (colors as in b).

Highly Emissive Deoxyguanosine Analogue Capable of Direct Visualization of B–Z Transition

Cellular activity of siRNA oligonucleotides containing synthetic isomorphic nucleoside surrogates

Dynamics of Methylated Cytosine Flipping by UHRF1

Polymerase-MediatedSite-Specific Incorporation of a Synthetic

HH "G-Ribozyme

HH Substrate

Development of a Vivid FRET System
Based on a Highly Emissive dG-dC
Analogue Pair

Environmentally Sensitive Fluorescent
Nucleoside Analogues for Surveying
Dynamic Interconversions of Nucleic Acid
Structures

Approach to the Investigation of Nucleosome Structure by Using the Highly Emissive Nucleobase thdG-tC FRET Pair

Table 1. Photophysical Data of thG-Labeled (-)/(+) PBS Matched Duplexes^a

0.08 -

(-)PBS	(+)PBS	hypochromism (%)	QY	τ_1 (ns)	α_1	J_1	τ_2 (ns)	α_2	J_2	$\langle \tau \rangle$ (ns)	$k_{\rm r} (10^{\circ} \times 5^{\circ})$	$k_{\rm nr} (10^{\circ} \times S^{\circ})$
$A^{th}GA$	TCT	32	0.18	1.7	0.17	0.03	11.9	0.83	0.97	10.1	1.8	8.1
$T^{th}GT$	ACA	29	0.15	2.4	0.14	0.04	11.1	0.86	0.96	9.9	1.5	8.6
$C^{th}GC$	GCG	41	0.16	3.4	0.31	0.13	10.6	0.69	0.87	8.4	1.9	10.0
$G^{th}GG$	CCC	41	0.15	4.4	0.39	0.19	12.3	0.61	0.81	9.2	1.6	9.2
thG H1 in	n water ^f		0.51				20.5				2.49	2.39
+b-												

thG H1 in MeOHf 0.42 14.5 2.9 4.0

"Standard Deviation (SD) = ${}^{b}\pm2\%$; " ${}^{c}\pm0.02$." ${}^{d}\pm0.1-0.3$ ns. " ${}^{e}\pm0.01-0.05$." Data from Martinez-Fernandez et al, 2019. Excitation wavelength was

360 nm. The amplitudes, α_i , are calculated from the integrated areas under the DAS of each lifetime component normalized with respect to the

total emitted intensity. The fractional intensities were calculated by $f_i = \alpha_i \tau_i / \langle \tau \rangle$. The radiative and nonradiative rate constants were calculated by k_r = QY/ $\langle \tau \rangle$ and $k_{nr} = 1/\langle \tau \rangle - k_r$, respectively.

Table 5. Photophysical Properties of thG-Labeled (-)/(+) PBS Mismatched Duplexes^a

(-)PBS	(+)PBS	hypochromism (%)	QY	τ_1 (ns)	α_1	f_1	τ_2 (ns)	α_2	f_2	$\langle \tau \rangle$ (ns)	$k_{\rm r} (10^7 \times {\rm s}^{-1})$	$k_{\rm nr} \ (10^7 \times {\rm s}^{-1})$
$G^{th}GG$	CTC	37	0.10	2.4	0.43	0.16	9.3	0.57	0.84	6.3	1.6	14.2
$G^{th}GG$	CAC	13	0.17	4.4	0.39	0.18	12.9	0.61	0.82	9.6	1.8	8.7
$G^{th}GG$	CGC	32	0.23	2.5	0.29	0.05	19.8	0.71	0.95	14.8	1.5	5.2
$G^{th}GG$	CAbC	28	0.15	4.0	0.49	0.25	11.6	0.51	0.75	7.9	1.9	10.8
$C^{th}GC$	GTG	24	0.15	2.1	0.42	0.10	13.5	0.58	0.90	8.7	1.7	9.8
$C^{th}GC$	GAG	15	0.34	2.7	0.19	0.03	18.8	0.81	0.97	15.7	2.2	4.2
$C^{th}GC$	GGG	30	0.21	3.5	0.26	0.08	14.8	0.74	0.92	11.8	1.8	6.7
$C^{th}GC$	GAbG	26	0.12	4.7	0.68	0.42	14.5	0.32	0.58	7.8	1.5	11.2
$A^{th}GA$	TTT	33	0.37	2.3	0.31	0.04	27.3	0.69	0.96	19.6	1.9	3.2
$A^{th}GA$	TAT	12	0.48	2.8	0.22	0.03	28.6	0.78	0.97	22.9	2.1	2.3
$A^{th}GA$	TGT	28	0.42	2.3	0.17	0.02	26.9	0.83	0.98	22.7	1.8	2.6
$A^{th}GA$	TAbT	28	0.47	2.4	0.18	0.02	25.0	0.82	0.98	20.9	2.2	2.5
$T^{th}GT$	ATA	25	0.35	3.0	0.27	0.04	26.8	0.73	0.96	20.4	1.7	3.1
$T^{th}GT$	AAA	25	0.42	3.0	0.24	0.04	23.8	0.76	0.96	18.8	2.2	3.1
$T^{th}GT$	AGA	31	0.33	5.5	0.25	0.09	19.4	0.75	0.91	15.9	2.1	4.2
$T^{th}GT$	AAbA	23	0.25	3.4	0.28	0.07	16.9	0.72	0.93	13.1	1.9	5.7

"All reported values are the means for two to four experiments. The standard errors of the mean of the reported values are 8% for the QY, 10% for hypochromism, $\pm 0.1-0.3$ ns for τ_1 , $\pm 0.2-0.8$ ns for τ_2 , <0.05 for the amplitudes (α_i) and fractional intensities (f_i). The radiative and nonradiative rate constants were calculated as described in Table 1.

Thanks for your attention!