Literature Report

Reporter: {5
Date: 2021-12-31



JACS

OURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Site-Specific Labeling of Endogenous Proteins Using CoLDR
Chemistry

Rambabu N. Reddi,” Adi Rogel,# Efrat Resnick, Ronen Gabizon, Pragati Kishore Prasad, Neta Gurwicz,
Haim Barr, Ziv Shulman, and Nir London™

Tagged active protein

0O

N ~lag
H

S

Site specific labelling o
Tunable reactivity Recognition
Easy synthesis Element



DOCKovalent

DOC o mson

DOCKovalent is a covalent virtual
screening software that was
developed by Dr. London while at the
Shoichet Lab at UCSF.

DOCKovalent is an adaptation of the
DOCK virtual screening software to
be able to screen covalent inhibitors
for a given protein structure.

2015, Postdoctoral Fellow, University of California, San Francisco

Kinases are extremely important for
signaling and as potential drug
targets, but are notoriously hard to
inhibit specifically (without hitting
off-targets). By targeting non
conserved cysteine residues nearby
kinase active sites we were able to
design very specific covalent
kinase inhibitors.

Highly specific kinase inhibitioovalent Allosteric
Modulation

Through harnessing an irreversible
covalent bond, a designed covalent
probe could theoretically stabilize
rare protein conformations. We are
developing compounds that would
bias signaling proteins to a specific
activated conformation that would
allow unprecedented control of
signaling pathways.

2007, M.S., Computer sciences and computational biology, University of Jerusalem
2011, PhD, Microbiology and molecular genetics, Hadassah Medical School

2019-present, The Alan and Laraine Fischer Career Development Chair, Department of Organic
Chemistry, The Weizmann Institute of Science

Covalent docking - methods
development

The lab continually strives to advance
our covalent docking technology.
This includes the implementation of
new algorithms for improved sampling
and scoring of covalent adducts as well
as systematic analysis of available
covalent complexes.
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)) Selective modifications of native proteins

Genetic engineering ‘ Chemical bioconjugation
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)) Development of ligand-directed cysteine labeling probes
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Figure 1. Development of ligand-directed cysteine labeling probes. (A) By reversing the directionality of our previously developed CoLDR
chemistry, (37) we generate probes that place the electrophilic carbon in the exact same position but now release the protein recognition moiety (R;
typically an inhibitor). (B) Schematic representation of the reaction of a target cysteine with a substituted a-methacrylamide through CoLDR chemistry.



)) Site-selective labeling of BTK using CoLDR chemistry

BTK: Bruton’s tyrosine kinase
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Figure 2. Site-selective labeling of BTK using CoLDR chemistry. (A) Chemical structures of ibrutinib-directed methacrylamides with various functional tags. (B) Typical example of the reaction of BTK (2 uM) with 1i (2
uM) in a 20 mM Tris buffer at pH 8, 25 °C. (C) Deconvoluted LC/MS spectrum shows the labeling of a BODIPY probe and demonstrates Ibr-H leaving. (D) Percent of labeling of BTK (2 uM) with the probes (1a—1m; 2
uM) at 10, 30, and 120 min in 20 mM Tris buffer at pH 8, 25 °C. (E) Kinetics of the increase in fluorescence intensity measured at Ex/Em = 550/620 nm (n = 4) upon addition of BTK (2 pM) to 1h (2 uM) in 20 mM Tris
buffer at pH 8, 37 °C (blue). Control experiments without BTK (red), preincubation of ibrutinib (4 pM) and Ibr-H (4 uM) prior to adding 1h (green and orange, respectively), and incubation of K-RasG12C (pink) with 1h
show no fluorescence. (F) Deconvoluted LC/MS spectra for BTK incubated with 1h at the end of the fluorescence measurement (shown in E). The adduct mass corresponds to a labeling event in which the Ibr-H moiety was

released, validating the proposed mechanism.



)) Site-Specific Labeling Probes for BTK
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Labelling by CoLDR probes does not affect ligand binding.
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)) Detecting binding events within the active site of BTK.
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Turn-on fluorescent environmental sensitive probe can detect binding events to BTK.
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) Intrinsic Thiol Reactivity of BTK Probes
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Figure S9. Reaction with reduced GSH validates the elimination of ligands and demonstrates their intrinsic thiol reactivity is tunable.
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)) CoLDR Labeling is General across Protein Targets
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Figure 3. Selective labeling of various target proteins. Structures of alkyne/ester labeling probes for (A) BTK, (B) K-RasG12C, and (C) SARS-CoV-2
PLpro. Deconvoluted LC/MS spectra for (D) BTK (2 pM) incubated with 2a (2 uM) in 20 mM Tris buffer at pH &, 25 °C, 10 min, (E) K-RasG12C (10 uM)
incubated with 3a (100 uM) in 20 mM Tris at pH 8, 37 °C, 16 h, and (F) PLpro (2 uM) incubated with 4a (10 uM) in 50 mM Tris at pH 8, 25 °C, 16 h. The
adduct masses correspond to a labeling event in which the ligand was released.



) ) Ligand-Directed Site-Selective Labeling of BTK in Cells
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Figure 4. Labeling BTK with CoLDR probes does not inhibit its activity in cells. (A) Cellular labeling profile of 1b, 1f, and 11 after 2 h of incubation with Mino cells and 1g in Mino cell lysate. 1b and 1f samples were
further reacted with TAMRA-azide in lysate before imaging. An arrow indicates BTK’s MW. (B) Time-dependent labeling profile of 1f with BTK after incubation of Mino cells with 100 nM probe followed by a click
reaction with TAMRA-azide in lysate prior to imaging. (C) Competition experiment of 1b, 1d, 1f, and 1i with ibrutinib. The cells were preincubated for 30 min with either 0.1% DMSO or 1 uM ibrutinib, followed by 2 h of
incubation with 200 nM 1b or 1f or 100 nM 1d or 1i. (D) Mino cells were incubated with 0.1% DMSO or 1b (100 nM). Samples were further reacted with biotin-azide in lysate, followed by enrichment, trypsin digestion,
and peptide identification by LC/MS/MS. The log(fold-ratio) of proteins enriched by 1b over DMSO is plotted as a function of statistical significance. BTK is clearly identified as the most enriched target; additional
prominent targets that correspond to bands identified by in-gel fluorescence (panel C) are indicated. (E) BTK activity assay in Mino cells as measured by autophosphorylation of BTK. The cells were incubated for 1 h with
either 0.1% DMSO, 1 uM ibrutinib, 1 uM Ibr-H, or 100 nM 1b, 1f, 1h, or 1i. The cells were either washed or not before induction of BTK activity by anti-IgM. (F) BTK activity assay: Mino cells were incubated for 2 h
with either DMSO or 1 uM 1b, 1f, 1i, and 1h, washed, and then incubated for 45 min with ibrutinib (100 nM). The cells were washed again before induction of BTK activity by anti-IgM. The CoLDR probes were able to
rescue BTK activity from inhibition by ibrutinib. (G) Primary B cell activation induced by anti-IgM after 24 h of treatment with increasing doses of either ibrutinib, 1b, or 1f, showing no inhibition of the CdLZDR probes.



)) BTK half-life determination using CoLDR probes BTK tagging don'’t Interfere with PROTAC binding
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Figure 5. Measurement of BTK half-life. (A) Half-life measurement of BTK using 1f. Mino cells were pulse-labeled with 100 nM 1f for 1 h and were then washed to remove the excess probe. Cells were harvested at
the indicated time points, and lysates were reacted with TAMRA-azide. The signal of BTK was quantified, and the half-life was calculated. (B) Half-life measurement of BTK with the cycloheximide (CHX) assay,
using 20 pg/mL cycloheximide. (C) Quantification of BTK levels in A and B (by normalization to the protein concentration) in Mino cells (1f: n = 3, CHX: n = 4). (D) Calculated half-life by both methods, presented
as mean * SD. (E) Degradation of BTK labeled with 1i using PROTAC 1q. Mino cells were incubated with 1i (100 nM), then washed to remove the excess probe, again incubated with PROTAC 1q for 2 h at 0.5 and
1 uM, and then lysed. Samples are subjected to in-gel fluorescence (FL) and Western blot (WB). (F) Quantification of BTK levels in panel E (normalization to the B-actin has been done for Western blot).



)) CoLDR Chemlstry Allows the Installation of a Degradation Handle
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Figure 6. Measurement of induced degradation by CoLDR PROTACs. (A) Schematic
representation of target degradation using CoLDR PROTACS. (B) Structure of
CoLDR-based BTK PROTACS. (C) In vitro labeling of BTK (2 uM) with 1n—1p (2
uM) in 20 mM Tris buffer at pH 8, 25 °C. (D) Western blot evaluation of BTK levels in
Mino cells in response to various concentrations of 1n after 24 h of incubation. (E)
Quantification of BTK levels in D by normalization to the B-actin house-keeping gene
in Mino cells. DC50 and Dmax were calculated by fitting the data to a second-order
polynomial using the Prism software. (F) Mino cells were pretreated for 2 h with either
ibrutinib/thalidomide-OH or DMSO before treatment with a BTK PROTAC for 24 h
(n = 2). Subsequently, BTK levels were measured via Western blot. (G) Mino cells
were treated for 24 h with either 0.1% DMSO or In (500 nM) in 4 replicates. Lysates
were subjected to trypsin digestion and peptide identification by LC/MS/MS. The
Log2(fold-ratio) of proteins enriched in the DMSO samples over In-treated samples is
plotted as a function of statistical significance. Significantly degraded proteins are
indicated in red and defined as Log2(DMSO/1n) > 1 and p-value < 0.01.
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