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1.1 Site-selective conjugation on purified proteins
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)) Antibody—-drug conjugates (ADCs)
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Fig. 1 (top) The general structure of an ADC and the role of each component. (bottom) The chemical Fig. 2 (A) The traditional mechanism of action, involving endocytosis and
structures of the four currently FDA-approved ADCs with the linkers in blue and the payloads in red. intracellular payload release. (B) The non-internalising, extracellular
(A) gemtuxumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®) (B) trastuzumab mechanism of action.

emtansine (Kadcyla®) (C) brentuximab vedotin (Adcetris®).



)) Chemical- or Iight—mediated decaging of prodrugs
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B. Cyanine-Based Near-IR Cleavable Linker - Design and Mechanism
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)) Metal-mediated decaging of prodrugs

Previous work
a Decaging of terminal propargyl carbamates (cells and mice)
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)) Platinum-Mediated Bioorthogonal Bond Cleavage
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Secondary amines protected in the form of a tertiary pentynoyl amide (top) or N-propargyl (bottom) can be selectively deprotected by platinum reagents
like the chemotherapeutic drug CisPt. This strategy was explored for drug activation of the protected MMAE and 5-FU drugs and extended for drug

release from an ADC in cancer cells. Ultimately, CisPt-mediated activation of a “5-FU-propargyl prodrug” was evaluated in a zebrafish xenograft model
for treatment of colorectal cancer.



) Engineering of a Platinum-Mediated Decaging Reaction

a Previous work c Catalytic decaging of tertiary amides
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Figure 1. Platinum-mediated decaging reaction engineering. a.
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) Mechanistic and Kinetic Studies of the Platinum-Mediated Decaging Reaction
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Figure 2. Examination of the platinum-catalyzed bioorthogonal cleavage reaction. a. Naphthalimide-based fluorogenic probes were used to study the cleavage efficiency of the platinum
reaction for decaging alkyne-containing molecules. The caged naphthalimide derivatives exhibited high stability in solution and cell media and their quenched fluorescence could be
reactivated upon removal of the caging group (Aex = 445 nm, Aem = 545 nm). b. Changes in fluorescence intensity during the time course of the decaging reaction between fluorogenic
probe 7 and platinum salts (K2PtCl4/CisPt). c. Determined half-time for the reaction of 7 with activated and nonactivated platinum salts. d. Decaging kinetics for the pentynoyl amide
fluorophore. Rate constants were determined under pseudo first order conditions with a 50 uM final concentration of probe 7 and 10-50 equiv of aqua platinum metals. e. Kinetics profiles
of the decaging reaction in the presence of the metal poisons CS2 and EDTA. Error bars represent + s.d. (n = 3). All experiments were repeated 3 independent times. f. Calculated
mechanism for the depropargylation reaction catalyzed by Pt with model substrate 4a. Calculations were performed with an implicit solvent model for water. Geometries and frequencies
were calculated with the functional revPBE and, to obtain very accurate energetics, single point energy calculations with DLPNO-CCSD(T) and counterpoise corrections were employed
to suppress basis set superposition errors.



)) Platinum-Mediated Decaging in Living Cells
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Figure 3. Platinum-mediated decaging in cells. HeLa cells were incubated with different concentrations of MMAE-am 11a or pFU 12b for 3 days with or
without K2PtCl4 (20 uM, twice a day). Compound 13, a nondecaging alkyl-FU derivative, was used as a negative control. Toxicity was determined by
AlamarBlue assay. Error bars represent + s.d. (n = 3). Each experiment was repeated three times. The statistical significance of the differences between
groups was evaluated with the unpaired t test. Statistical results: ns > 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.



)) Platinum Decaging of ADC
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Figure 4. Platinum-mediated drug decaging from a noninternalizing ADC. a. Cysteine-selective and irreversible modification of the noninternalizing antibody F16 (anti tenascin-C) in IgG
format with MMAE conjugating linker 14. 1gG(F16) contains a single reactive cysteine at the C-terminal extremity of the light chain ideal for cysteine-specific modification. Briefly, a
solution of F16 (7.1 uM) in sodium phosphate buffer (NaPi) pH 7.4 was treated with 14 (40 equiv) in MeCN to a final concentration of 10% v/v. The reaction was heated to 37 °C for 1 h,
and reaction progress was monitored by LC-MS. The ADC was purified by dialysis into fresh NaPi buffer pH 7.4 with a 10 kDa MWCO overnight. b. Deconvoluted ESI-MS mass
spectrum of the light-chain of F16. c. Deconvoluted ESI-MS mass spectrum of the light-chain of F16-14 that shows an exact drug-to-light-chain ratio of 1. d. Schematic of the platinum-
mediated decaging of MMAE from a noninternalizing ADC. e. Cell viability of HelLa cells after treatment with F16-14 and subsequent decaging efficiency upon treatment with 20 uM

K2PtCl4, twice daily. Cell viability was measured at day 3 by using AlamarBlue reagent. The statistical significance of the differences between groups was evaluated by using the
unpaired t test. A p value <0.05 (**) was considered statistically significant. Error bars represent + s.d. (n = 3). Experiments were performed three times.



) Cisplatin-Mediated Prodrug Decaging in Vivo
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Figure 5. CisPt Decages the Fluorogenic Probe 9 in vivo. Zebrafish larvae were exposed to 9 diluted in embryonic medium for 24 h, followed by a 1 h wash in
embryonic medium. Larvae were randomly distributed into two conditions: DMSO or CisPt for 24 h (a). Confocal image of zebrafish larvae exposed to 9 +
DMSO (b) and 9 + CisPt (c).



) Cisplatin-Mediated Prodrug Decaging in Vivo
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Figure 6. CisPt-mediated prodrug decaging in zebrafish xenografts. HCT116 human CRC cells were fluorescently labeled with lipophilic CM-Dil (shown in red) and injected into the
perivitelline space (PVS) 2 days post fertilization (dpf) Tg(Flil:eGFP) zebrafish larvae. Zebrafish xenografts were randomly distributed into treatment groups, daily treated with DMSO,
CisPt, pFU, and pFU+CisPt and analyzed at 4, 6, or 7dpi for proliferation, apoptosis and tumor size. At 4 dpi, 6 dpi, and 7dpi, zebrafish xenografts were imaged by stereoscope (a—I) and
by confocal microscopy (a'—I"’ DAPI plus Dil, a”—I"” maximum projection of activated caspase 3). Proliferation (mitotic figures: m; p, *P = 0.0104, ***P = 0.0004, ****P < 0.0001; s, **P
= 0.0023, *** P = 0.0002), apoptosis (activated caspase 3: n, **P = 0.0033, ***P = 0.0006; q, *P = 0.0126, ****P < 0.0001; t, **P = 0.0068) and tumor size (n° of tumor cells: o, *P =
0.0279; r, ****p < 0.0001; u, *P = 0.0411, **P = 0.0010) were analyzed and quantified. Graphs represent fold induction (normalized values to controls) of Avg + SEM. The number of
xenografts analyzed is indicated in the representative images and each dot represents one zebrafish xenograft. Statistical analysis was performed using an unpaired test. Statistical results:
ns > 0.05, *P < 0.05, **P <0.01, ***P < 0.001, and ****P < 0.0001. All images are anterior to the left, posterior to right, dorsal up, and ventral down. Scale bar 50 um.



