
Methine-Quinoidal Fragment Induces Significant Bathochromic
Shifts in Organic Dyes
Tianruo Shen, Ying Gao, Chao Wang, Zhaochao Xu, and Xiaogang Liu*

Cite This: J. Phys. Chem. B 2021, 125, 1447−1452 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Bathochromical shifts in the UV−vis absorption (and emission) spectra
and reduced molecular sizes are two desirable features of organic dyes in many
applications, i.e., live-cell fluorescence imaging and solar cells. Yet, these two features are
often viewed as contradictory requirements as expanding the π-conjugation is one of the
most widely used methods for prompting this redshift. Interestingly, it has been reported
that linking a methine-quinoidal unit can result in a significant redshift in the UV−vis
absorption spectra in comparison with the methine-benzenoidal constitutional isomers
(by 61 nm in dioxane). Herein, using comprehensive quantum chemical calculations with
various functionals and solvent formalisms in 10 solvents with different polarities, we
demonstrated that the formation of the quinoidal moiety plays a decisive role in this redshift. We further showed that the inclusion of
a quinoidal unit without increasing the molecular size represents a general design strategy for the bathochromic shifts of many
organic dyes.

1. INTRODUCTION
Small-molecule dyes play instrumental roles in numerous
applications, such as fluorescent stains/probes and dye-
sensitized solar cells (DSSC).1−5 These applications demand
two favorable features from dyes, including (i) minimizing the
molecular size of dyes, for lessening interference to native
cellular environments during live-cell bioimaging (provided
that such dyes have good cellular permeability and low
toxicity) and boosting dye loading in solar cells,6 and (ii)
enhancing the bathochromic shifts of dyes for reducing
phototoxicity to live cells or a matching solar spectrum.7,8

Yet, these features are often viewed as contradictory require-
ments as small dyes often absorb and emit lights in the blue-
green region. Accordingly, molecular design strategies that
simultaneously endow both features remain largely missing. It
is thus intriguing to explore generalizable strategies to develop
“small and red” dyes based on a deep understanding of their
structure−property relationship.
Currently, several strategies have been frequently deployed

for bathochromically shifting the UV−vis absorption and/or
emission spectra of dyes. The most popular strategy is
probably the expansion of π-conjugation. For example, Yang
and co-workers developed a platter of biocompatible near-
infrared organic fluorophores.9 These fluorophores showed
long UV−vis absorption and emission peaks of up to 887 and
938 nm, respectively. Unfortunately, this method significantly
increases the molecular sizes of dyes. The second method for
enhancing the redshift employs substituents with increasing
the electron-donating/withdrawing strength to improve intra-
molecular charge transfer. For instance, Cole’s group showed
that enhancing the push−pull effects leads to notable redshifts
in coumarin derivatives.10 Meanwhile, Liu and co-workers

demonstrated that changing substituent positions could also
greatly enhance intramolecular charge transfer (ICT) and
boost the redshift in emissions.11 Yet, increasing ICT may also
lead to an undesirable reduction of light absorbance. Given
that these methods face various challenges in producing small
and red dyes, it remains critical to explore new strategies to
enhance the redshift while keeping small molecular sizes.
To this end, Segawa’s group reported two constitutional

isomeric dyes, 1 and 2 (Figure 1a), with the only difference in
positions of a thiophene unit and a methine fragment along the
π-conjugation bridge.12−14 Notably, 2 displayed a redshifted
peak UV−vis absorption wavelength (λabs) compared to 1 by
61 nm in dioxane. Manzhos and co-workers further performed
a series of quantum chemical calculations to understand this
spectral difference.12,13 They showed that time-dependent
density functional theory (TD-DFT) calculations using global
hybrid functionals did not correctly reflect the tendency in
excitation energies (2 > 1). In contrast, the difference of λabs
between 1 and 2 can be calculated qualitatively with long-range
corrected functionals. Corrections based on the charge transfer
index were required to accurately reproduce experimental
results. Meanwhile, they also found that the proximity effect of
the electron-withdrawing group in 2 induces the quinoidization
for the lower excitation energy. Subsequently, Manzhos et al.
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designed several long-wavelength dye sensitizers in silico by
exchanging the positions of the thiophene and the methine
units to induce quinoidal structures.15−18 However, the
detailed molecular origins of this significant redshift without
increasing the molecular size of 2 remain elusive.
Herein, we performed a complete benchmark on the TD-

DFT calculations, including the impact of solvent polarities,
solvent formalisms, and the choice of density functionals and
basis sets. Interestingly, our results showed that hybrid
functionals with large Hartree−Fock19 exchange fractions
(HF%) and range-corrected functionals could successfully
emulate the experimental results of Segawa and Manzhos’s
groups.12 Based on these computational results, we focus on
revealing the detailed molecular origins of the redshift in 2. We
further summarize a molecular design strategy to enhance the
redshifts and molar absorption coefficients of organic dyes via
incorporating a quinoidal moiety with good planarity and
demonstrate the generalizability for this strategy by designing
several dyes.

2. RESULTS AND DISCUSSION

2.1. Establishing the Computational Methods for
Modeling Dyes with Varied Sequences of Molecular
Fragments. Before conducting an in-depth analysis, we
evaluated seven functionals with different HF% and three
solvent formalisms in reproducing the relative redshift of 2
compared to that of 1. We considered one pure functional:
PBE (HF% = 0),20 four global hybrid functionals: B3LYP
(20%),21 PBE0 (25%),22,23 BMK (42%),24 and M06-2X
(54%),25 and two range-separated functionals: CAM-B3LYP

(19−65%)26 and ωB97XD (22−100%).27 We also considered
three solvent formalisms to account for the solvent effects,
including (i) linear-response (LR),28,29 (ii) corrected linear-
response (cLR),30 and (iii) state-specific (SS)31,32 solvent
formalisms based on the SMD solvation model.33 Solvents of
different polarities from cyclohexane to water were also
included.
In general, the calculated λabs values of 1 and 2 in dioxane

decrease as the HF% increases in solvents of various polarities
(Figure 1a−d and Figures S1 and S2). We also found that the
calculated λabs of 1 is more sensitive to the change in HF% than
2. It was observed that different functionals may be required
for calculating 1 and 2 to match the calculated λabs values to
the experimental data. For instance, using the LR solvent
formalism, the computed λabs value of 1 using the BMK
functional is close to the experimental result. In contrast, the
B3LYP functional yielded a better agreement with the
experimental λabs value of 2 (Figure 1b). Similar observations
were also found in cLR (Figure 1c) and SS formalisms (Figure
1d).
Next, we consider the relative changes in λabs for 1 and 2,

namely, the redshift in λabs of 2 with reference to that of 1. Our
calculations show that all three solvent formalisms can predict
the redshift of 2 while in combination with M06-2X, CAM-
B3LYP, and ωB97XD functionals that include larger HF
exchange contributions (Figure 1b−d). Among these three
formalisms, the LR formalism affords the closest agreement
with experimental data. This is mainly because the state-
specific solvent formalism (cLR and SS) may overestimate the
solvent−solute interactions.34,35 In addition, the LR formalism

Figure 1. (a) Molecular structures of 1 and 2 with structural differences highlighted in blue and red, respectively. Calculated peak UV−vis
absorption wavelengths (λabs, nm) of 1 and 2 in dioxane using various functionals, in combination with (b) the linear-response (LR), (c) the
corrected linear-response (cLR), and (d) the state-specific (SS) solvent formalisms. Dashed lines depicted the experimental λabs data of 1 and 2 in
dioxane.
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requires the lowest computational load. Hence, we selected it
for all subsequent calculations in accounting for solvent effects.
Furthermore, the difference of calculated λabs values of 1 and

2 using the ωB97XD functional and LR solvent formalism is
51.1 nm, which is very close to the experimental data of 61 nm
(Figure 1b). Hence, although it underestimates absolute λabs
values, we decided to choose the ωB97XD functional in our
subsequent calculations as our main interest is to study the
relative spectral shifts between 1 and 2, and this relative
redshift is successfully reproduced by ωB97XD. The same
trend in the performance of this functional (i.e., large errors in
the absolute excitation energy but small errors in the relative
excitation energy) has also been noted in other systems with
varying degrees of charge transfer.36

To investigate the influence of basis sets on the calculations,
we computed the λabs and excitation energies of 1 and 2 using
ωB97XD in dioxane, in combination with def2-SVP, def2-
SVPP, def2-TZVP, and def2-TZVPP basis sets (Figure S3).
Our results showed that different basis sets have little impact
on λabs (∼2 nm) and excitation energies (∼0.01 eV) in terms
of the difference between 1 and 2.
Based on these computational methods, we also calculated

λabs of 1 and 2 in 10 solvents of different polarities (Figure S1).
Our calculations show that both 1 and 2 display a positive
solvatochromism, while functionals with large HF contribu-
tions show that 1 and 2 display redshifts in the UV−vis
absorption wavelengths as the solvent polarity increases.
Interestingly, experimental data shows that 1 displays a
negative solvatochromism from dioxane to dimethyl sulfoxide
(DMSO), in contrast to the positive solvatochromism of 2.
Our computational analysis shows that the “apparent” negative
solvatochromism of 1 is related to deprotonation in polar
solvents (Figure S4), in agreement with the hypothesis of
Segawa et al.12

2.2. Molecular Origins for the Redshift and the
Enhanced Molar Absorption Coefficient in 2. Based on
the computational results in dioxane, we next investigated the
molecular origins for the relative redshift of 2 in comparison to
1 in dioxane. To this end, the bond-length alternation (BLA)
value is one critical parameter to identify the representative
resonance structures of organic dyes: vanishing BLA for the
benzenoid structure while large BLA for the quinoidal
structure.37,38 We calculated the BLA values of 1 and 2 at
the ground state (S0) along three different paths on the π-
conjugation bridges (Figure 2a). These results consistently
show that the BLA values of 2 are much larger than that of 1,
suggesting a stronger quinoidal characteristic in 2 (Figure 2b).
The BLA values and the contrast between 1 and 2 are
particularly significant along path 2, which consists of the
swapped thiophene and methine fragments. As a result, 1 can
be described by the combination of representative resonance
structures of delocalized structures with partially charge
separation, while 2 can be described by the polarized structures
with significantly charge separation (Figure 2c). These
different resonance structures suggest that 2 may have larger
polarization in S0 than 1. Overall, we showed that exchanging
the sequence of the thiophene ring and the methine group
effectively enables the quinoidal characteristic in 2.
We next compared the electrostatic potential (ESP) of 1 and

2, with a focus on the partial charge at the dimethylamino
donor (QD) and carboxyl and cyanide acceptors (QA; Figure
3a). We noted that the positive potential is mainly focusing on
the donor of 2, which is higher than that of 1. Meanwhile, 2

shows a more substantial negative potential on the acceptor
than 1 does, affording a net charge of −0.138 e for 2 compared
to that of 1 (−0.051 e). Our result indicates that 2 is much
more polarized than 1 is in S0. In other words, the same
donor/acceptor group appears to be more effective in the
electron-donating/withdrawing property in 2, with the
presence of the quinoidal unit in the π-conjugation bridge in
S0. Indeed, previous studies suggest that the resonance energy
of the quinoidal ring tends to enhance the charge separation in
S0.

39

In good agreement with our interpretations of the electron-
donating/withdrawing strength, our calculations show that 2
has a higher/lower HOMO-LUMO energy level than 1 does
by 0.07/0.26 eV, respectively (Figure 3b). The difference in
the LUMO energy level is particularly large. Accordingly, the
HOMO-LUMO gap of 2 is much smaller than that of 1 by
0.33 eV. The reduced HOMO-LUMO gap rationalizes the
relative redshift of λabs for 2 in comparison to that of 1.
We also compared the charge transfer distances of both 1

and 2 in the Franck−Condon state (Figure 3c). Owing to the
extensive polarization of 2 in S0, further charge transfer during
the photoexcitation becomes weak for 2, as indicated by a

Figure 2. (a) Three different conjugation paths in 1 and 2 for
calculating bond-length alternation (BLA) values are highlighted in
green and orange. (b) Calculated BLA values for 1 and 2 based on the
optimized ground-state geometries in dioxane in the ground state
(S0). (c) Representative resonance structures of 1 and 2 with different
degrees of charge separation.
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smaller charge transfer distance (dCT = 4.09 Å), in comparison
to that of 1 (dCT = 8.64 Å). The shorter charge transfer
distance in 2 is also consistent with a smaller change in the
donor/acceptor atomic contributions upon HOMO-LUMO
transition (Δη; Figure S2d). As a result, while the calculated
dipole moment of 2 (12.77 Debye) is much larger than that of
1 (8.01 Debye) in S0, the calculated excited-state dipole
moments of both compounds are comparable. It is also
interesting to note that the quinoidal ring tends to confine the
electron density in LUMO owing to the enhancement toward
the benzenoid character in the excited state.
Due to the smaller dCT (corresponding to a large HOMO-

LUMO overlap), the calculated molar absorption coefficient of
2 is larger than that of 1 (Figure S4c). A large molar absorption
coefficient (ε) in 2 suggests a better light absorption ability,
which is favorable for both bioimaging and solar cell
applications.
2.3. Generalization of the Methine-Quinoidal Strat-

egy in Enhancing the UV−Vis Absorption Wavelengths
and Molar Absorption Coefficients of Organic Dyes.
Based on the mechanistic understanding of the methine-
quinoidal strategy, we next investigate the effectiveness of this
method in enhancing the UV−vis absorption wavelengths and

molar absorption coefficients in various organic dyes. We
designed five pairs of dyes in silico and analyzed their λabs
values, maximum molar absorption coefficients (εmax), and
electronic structures (Figure 4 and Figures S5 and S6).

Each pair of molecules consists of two constitutional
isomers, with a difference in the sequence of a conjugated
ring and a methine unit. In these five pairs of dyes, we modified
the π-conjugation bridge in 1a/2a and 1b/2b, the acceptor in
1c/2c, and the donor in 1d/2d and 1e/2e in comparison to
the original 1 and 2 (Figure 4a−d). To our delight, 2x
compounds all exhibit longer λabs and higher maximum molar
absorption coefficients (εmax) in comparison to their respective
1x analogues (Figure 4e,f). Calculations show that 2x
compounds also possess larger BLA values in the π-
conjugation bridges, along with more extensive charge
separation and higher dipole moments in the ground state,
than their 1x analogues (Figure S5a,b). These features are
entirely consistent with those revealed in 1 and 2.
Notably, the methine-quinoidal strategy is also useful for

improving the planarity of dyes, which may help maintain the
rigidity upon photoexcitation for an enhanced quantum yield.
For example, two consecutive phenyl rings introduce a
significant steric hindrance to each other, leading to a large
dihedral angle of 32.83° between these two rings in 1b (Figure
4d). In contrast, exchanging the sequence of the phenyl ring
and the methine unit in 2b greatly eased the steric hindrance,
reducing the dihedral angle to only 8.99°. Due to these
significant geometrical differences, the redshift of λabs from 1b

Figure 3. (a) Electrostatic potential (ESP) surfaces of 1 and 2 in
dioxane with the partial charge at the dimethylamino donor (QD, e)
and carboxyl and cyanide acceptors (QA, e). (b) Calculated energy
gap between HOMO and LUMO of 1 and 2 in dioxane. (c) Hole−
electron analysis with charge transfer distances (dCT, Å) and dipole
moments of 1 and 2 in dioxane. Cyan, hole; pink, electron.

Figure 4. (a) Molecular structures of 1a, 2a, 1b, and 2b. (b)
Molecular structures of 1c and 2c. (c) Molecular structures of 1d, 2d,
1e, and 2e. (d) Optimized geometries of 1b and 2b in dioxane. (e)
Calculated peak UV−vis absorption wavelengths (λabs, nm) of 1a−1e
and 2a−2e in dioxane. (f) Maximum molar absorption coefficients
(εmax, 10

4 M−1·cm−1) of 1a−1e and 2a−2e in dioxane.
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to 2b (134.85 nm) is the most striking among all five pairs of
dyes (Figure 4e).
These data provide convincing evidence that exchanging the

conjugated ring and the methine position to afford a methine-
quinoidal structure along the π-bridge represents a general
strategy to enhance the redshifts in the UV−vis absorption
spectra and increase the εmax of organic dyes.

3. CONCLUSIONS
In conclusion, our computational results showed that DFT/
TD-DFT calculations successfully reproduced the bath-
ochromic shift of 2 with reference to 1 by using hybrid
functionals with large HF% or range-separated functionals. Our
analysis shows that incorporating a methine-quinoidal unit in
the π-conjugation bridge effectively enhances the polarization
in the ground state and reduces the HOMO-LUMO gap, thus
affording a redshift while keeping the same molecular size in
constitutional isomers 1 and 2. In contrast to the extensive
polarization in the ground state, intramolecular charge transfer
was reduced in 2 during photoexcitation, leading to a smaller
charge transfer distance and a higher maximum molar
absorption coefficient. We further show that the structure−
property relationships revealed in 1 and 2 are also applicable to
many other dyes. Nevertheless, our work did not consider the
impact of the quinoidal unit on the emission properties of such
dyes owing to the lack of experimental data. Yet, it is of note
that the methine-quinoidal unit is present in several classical
fluorophores (such as rhodols). We expect that the
incorporation of the methine-quinoidal unit in the π-
conjugation would serve as a useful strategy to induce the
redshift of UV−vis absorption wavelengths and enhance molar
absorption coefficients of organic dyes while maintaining the
minimal molecular sizes.
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