Literature Report

Reporter: zhou wei Date: 2020-12-03

pubs.acs.org/JACS

Communication

Full Visible Spectrum and White Light Emission with a Single, Input-Tunable Organic Fluorophore

Andrés Zavaleta,* Aleksandr O. Lykhin, Jorge H. S. K. Monteiro, Shoto Uchida, Thomas W. Bell, Ana de Bettencourt-Dias, Sergey A. Varganov, and Judith Gallucci

Andrés Zavaleta Department of Chemistry, University of Nevada

Figure 1. Structure of M2biQ and solid-state fluorescence ($\lambda_{ex} = 365$ nm) of the free ligand and some of its salts. All samples were isolated from wet acetonitrile except for H⁺_{KTEE}, which was isolated from KOH/TFA/EtOH/Ether (KTEE). All other counterions are ClO₄⁻. See pp S66, 72 for details.

Ca²⁺

H+

探针光谱性质

Figure 2. Normalized emission spectra of M2biQ and its complexes (10^{-4} M) in MeCN. Salts used: KSCN, Sr(ClO₄)₂, Ca(ClO₄)₂, Cd(NO₃)₂, and Zn(ClO₄)₂. H_a⁺ = TFA/MeCN (1:4, v/v) and H_b⁺ = HCl (generated *in situ*). See pp S32–S33, for details.

Table 2. Experimental and Calculated (c) Absorption and Emission Wavelengths (λ_{max} , nm) of M2biQ Species in Acetonitrile ([M2biQ] = 10^{-4} M)

Species ^a	$\lambda_{\rm abs}$	λ_{abs} (c)	$\lambda_{ m abs}$	λ_{abs} (c)	$\lambda_{ m em}$	λ_{em} (c)
M2biQ	276	294	352	331	468	456
M2biQ·K ⁺	276	290	356	342	477	458
M2biQ·Sr ²⁺	273	287	366	353	510	485
M2biQ·Ca ²⁺	279	288	367	359	528	489
M2biQ·Cd ²⁺	282	293	368	362	551	514
$M2biQ_2 \cdot Zn^{2+}$	288	303	376	369	581	558
M2biQ·H+	290	304	384	380	690	585

Table 3. Quantum Yields and Lifetimes for RGB and YellowEmitters in Acetonitrile^a

Substance	Quantum yield, φ	Reference Standard	Lifetime τ (/ns)
M2biQ	0.25	Quinine sulfate ^{69,70}	5.55 ± 0.03
M2biQ·Ca ²⁺	0.44	Fluorescein ^{70,71}	17.3 ± 0.01
$M2biQ_2 \cdot Zn^{2+}$	0.01	$Ru(bpy)_{3}Cl_{2}^{70,71}$	6.88 ± 0.03
M2biQ·H ⁺	0.001	$Ru(bpy)_{3}Cl_{2}^{70,71}$	Unable to
			measure

晶体结构表征

Table 1. Bond Lengths^{*a*} and Dihedral Angles NC–CN and ω in Single Crystal X-ray Structures Corresponding to RGB and Yellow Species

Crystal	Bond Length/Å N-Guest	Bond Length (Å) O-Guest	Dihedral angle NC–CN $(\omega)^b$
M2biQ·H ₂ O	2.46/2.53 (NH ₂ O)	2.15/2.20 (OH ₂ O)	23.8° (24.3°)
M2biQ·Ca ²⁺	$2.46/2.47 (N-Ca^{2+})$	2.50/2.51 (O-Ca ²⁺)	9.0° (10.4°)
M2biQ·Zn ²⁺	$2.05/2.05 (N-Zn^{2+})$	$2.62/2.62 (O-Zn^{2+})$	$8.1^{\circ} (10.2^{\circ})$
M2biQ·H ⁺	0.86 (N–H ⁺)	2.31 (OH ⁺)	$7.5^{\circ} (7.9^{\circ})$
$M2biQ_2 \cdot Zn^{2+}$	$2.04/2.04 (N-Zn^{2+})$	$2.71/2.71 (O-Zn^{2+})$	$7.1^{\circ} (11.2^{\circ})$
(pair 1)	$2.06/2.06 (N-Zn^{2+})$	$2.74/2.74 (O-Zn^{2+})$	$14.0^{\circ} (12.6^{\circ})$
$M2biQ_2 \cdot Zn^{2+}$	$2.06/2.06 (N-Zn^{2+})$	2.76/2.77 (O-Zn ²⁺)	16.5° (19.6°)
(pair 2)	$2.04/2.04 (N-Zn^{2+})$	2.67/2.78 (O-Zn ²⁺)	16.0° (18.8°)

Figure S140. Crystal structure of M2biQ²Zn(ClO₄)₂. C atoms (blue), O atoms (red), N atoms (violet), Cl atoms (green), H atoms (white), Zn ion (brown).

Figure S142. Another view of the crystal structure of M2biQ₂·Zn(ClO₄)₂. C atoms (grey), O atoms (red), N atoms (blue), Cl atoms (green), Zn ions (violet).

Figure 4. M2biQ frontier molecular orbitals at the equilibrium geometry of the ground state.

FigureS38. Absorption spectrum of M2biQ in MeCN

excitations $S_0 \rightarrow S_1(HOMO \rightarrow LUMO)$, $S_0 \rightarrow S_2(HOMO-1 \rightarrow LUMO)$, and $S_0 \rightarrow S_3$ (HOMO-2 \rightarrow LUMO)

理论计算

Figure 5. Correlations of ionic radii and metal-nitrogen distances with experimentally measured and computed emission wavelengths in 1:1 M2biQ complexes.

Figure 6. Proposed mechanism for M2biQ absorption and emission (inset) and correlation between calculated HOMO-LUMO gaps and energy differences between S₁ and S₀ states at the S₁ minimum.