
Articles
https://doi.org/10.1038/s41592-020-0929-2

1Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. 2Department of 
Chemistry, Emory University, Atlanta, GA, USA. 3Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, 
Emory University, Atlanta, GA, USA. 4Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany. 5Max Planck 
Institute of Biochemistry, Martinsried, Germany. 6Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 
Birmingham, AL, USA. 7These authors contributed equally: Joshua M. Brockman, Hanquan Su. ✉e-mail: k.salaita@emory.edu

Mechanical forces are vital to biology, regulating diverse 
processes including early development, platelet activation 
and immune function1–3. Force magnitude, orientation 

and dynamics influence cellular signaling outcomes4. Interestingly, 
force-transducing structures, such as filopodia, focal adhesions and 
the cellular cytoskeleton, are organized at the nanoscale and likely 
apply dynamic forces with nanoscale organization5,6. To better under-
stand how mechanical forces are coupled to biochemical signaling 
pathways, methods are needed to map the nanoscale distribution of 
forces in living cells. However, to our knowledge, no technique is 
currently capable of dynamically mapping piconewton-scale forces 
with sub-100-nm resolution.

We and others have developed different types of molecular ten-
sion probes to map the piconewton forces applied by cells7–10. The 
most sensitive tension probes are composed of a DNA stem-loop 
hairpin flanked by a fluorophore-quencher pair11–14. Receptor forces 
unfold the stem-loop, separating the fluorophore from the quencher 
and producing a 20–100-fold increase in fluorescence11. In prin-
ciple, one could directly image these probes using super-resolved 
imaging techniques such as stochastic optical reconstruction 
microscopy (STORM) or stimulated emission depletion (STED) 
microscopy, which routinely generate subdiffraction images of bio-
logical structures15; however, quenching processes and photobleach-
ing make this technically challenging (Supplementary Note 1).  
Among the super-resolution techniques, DNA points accumulation 
for imaging in nanoscale topography (DNA-PAINT) has demon-
strated the ability to resolve single molecular complexes at ~5-nm 
spatial resolution16–19. DNA-PAINT leverages transient binding 
of fluorophore-tagged ‘imager’ strands to complementary DNA  

‘docking’ sequences to produce fluorescence blinking events ame-
nable to single-molecule localization (Supplementary Fig. 1)18. 
Moreover, DNA-PAINT is robust to photobleaching and can be con-
ducted in conditions that are favorable for live-cell imaging, making 
it suitable for capturing dynamic mechanical events. Theoretically, 
DNA-PAINT is also compatible with DNA tension probes because 
mechanical unfolding of the stem-loop reveals single-stranded 
DNA that could function as the docking sequence.

Results
To adapt our previously reported DNA-based molecular tension 
probes11 for use with DNA-PAINT, we encoded a cryptic docking 
sequence within the stem region of the hairpin (Supplementary 
Table 1, Supplementary Fig. 2 and Supplementary Note 1) and 
performed DNA-PAINT measurements with this construct. The 
cryptic docking site is duplexed and hence concealed from bind-
ing to imager until cellular forces mechanically melt the duplex, 
thus exposing it and allowing for imager binding. To our surprise, 
DNA-PAINT performed poorly in imaging forces using the conven-
tional stem-loop probe (Extended Data Fig. 1).

One potential reason for this poor performance is the mechani-
cally strained nature of the docking sequence. Force spectroscopy 
studies show that mechanical strain creates a barrier for hybridiza-
tion20. Accordingly, we developed a model20,21 to explore the kinet-
ics of imager hybridization to docking sites experiencing forces of 
1–50 pN. Consistent with our observation, the model predicts that 
mechanical forces can impede imager binding (Extended Data Fig. 1  
and Supplementary Note 2). Therefore, we designed and synthe-
sized a strain-free tension-PAINT (sf-tPAINT) sensor to funnel 
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mechanical force away from the docking site after probe open-
ing (Fig. 1a,b, Supplementary Note 1, Supplementary Fig. 2 and 
Extended Data Fig. 1). In this design, the sf-tPAINT sensor func-
tions as a force-triggered switch, exposing an unstrained cryptic 
docking sequence when receptor force, F, exceeds the probe F1/2, 
which is defined as the equilibrium F that produces a 50% prob-
ability of unfolding. To test this design, we coated coverslips with 
cyclic-Arg-Gly-Asp (cRGD) sf-tPAINT probes labeled with Cy3B–
BHQ2 and seeded human platelets onto these substrates. We used 
human platelets as a model because of their small size (2–5 μm),  
and the intimate link between mechanical forces and their clotting 
functions22–24. The Cy3B–BHQ2–sf-tPAINT probes reported platelet 
tension, and showed similar performance to conventional hairpin 
tension probes (Extended Data Fig. 1 and Supplementary Fig. 3).

Having validated that the sensor is functional in widefield 
microscopy, we next performed tPAINT on human platelet forces 
with sf-tPAINT probes lacking Cy3B–BHQ2 (Fig. 1c,d). Cells 
spread rapidly on the substrate, and, upon addition of 10 nM Cy3B 
imager in cell-imaging media, single-molecule fluorescence spots 
were observed under the cell-surface contact area (Supplementary 
Video 1). Platelets were imaged in total internal reflection fluores-
cence (TIRF) excitation mode at 5 Hz for 12 min. Localization of 
single Cy3B molecules using the Picasso software suite17 revealed 
super-resolved maps of platelet 8.5-pN integrin forces (Fig. 1c,d 
and Extended Data Fig. 2). Additionally, the sf-tPAINT probe out-
performed probes with strained docking sites, providing empirical 
support to our biophysical modeling (Supplementary Note 2 and 
Extended Data Fig. 1).

Integrin–ligand bond lifetimes are reported to be 0.1–20 s under 
force25,26, which will lead to undersampling of mechanically strained 
probes in tPAINT (Supplementary Note 3). To reduce this effect, 
we employed the recently developed speed-optimized PAINT strat-
egy27 which maximizes the on-rate of imager sampling, thus bet-
ter capturing short-lived mechanical events. Therefore, the data 
shown in Fig. 1c were collected with Tyrode’s buffer supplemented 
with 37.5 mM Mg2+, producing ~4-fold more localizations relative 
to experiments conducted in buffer without supplemental Mg2+, 
and a signal-to-background ratio of 10 (Supplementary Fig. 4,  
Extended Data Fig. 3 and Fig. 1c,d). This allowed us to create a 
timelapse of platelet mechanics where each frame integrated 200 s 
of single-molecule localizations (Fig. 1c,d). Upon initial contact 
with the surface, cells spread (as observed by reflection interfer-
ence contrast microscopy (RICM)) and then formed a ‘ring’ pat-
tern of tension at the lamellipodial edge (Fig. 1c,d). The mechanical 
ring was highly dynamic, translocating 185 ± 75 nm over ~2–5 min 
(Supplementary Fig. 5). We quantified the ring width as 150 ± 80 nm 
(eight cells, n = 3 experiments; Supplementary Fig. 5). Two repre-
sentative linescans are provided in Fig. 1e, demonstrating that the 
ring can be as thin as 90 nm. Additionally, we confirmed that the 
movement of the tPAINT signal coincides with the spread of the cell 
leading edge (Extended Data Fig. 4).

To demonstrate the generality of tPAINT, we imaged mouse 
embryonic fibroblasts (MEFs) stably expressing GFP-vinculin 
(MEF-GFP-vinculin) via tPAINT. Fibroblasts spread and formed 

focal adhesions (Fig. 1f). Following the addition of 10 nM Cy3B 
imager in media supplemented with 75 mM Mg2+, we imaged the 
cell in TIRF excitation mode at 5 Hz to produce super-resolved 
maps of integrin tension (Fig. 1f and Extended Data Fig. 2). Tension 
was associated with focal adhesions and generally extended slightly 
beyond the distal tip of the focal adhesion footprint (Supplementary 
Fig. 3 and Extended Data Fig. 4), a finding consistent with previous 
diffraction-limited molecular tension measurements28, and with 
traction force microscopy (TFM) measurements that found that the 
centroid of focal adhesion traction stresses was ~1 μm closer to the 
cell edge than the centroid of the focal adhesion itself29. Additionally, 
the number of tPAINT localizations was positively correlated with 
focal adhesion size and adhesion aspect ratio (Supplementary 
Fig. 6). We also confirmed that tPAINT is compatible with recent 
advances in computational super-resolution microscopy30 by per-
forming simultaneous tPAINT and super-resolution radial fluc-
tuations (SRRF) (Supplementary Fig. 3), demonstrating a close 
connection between tPAINT localizations and GFP-vinculin.

To further accelerate the imager sampling rate of mechanically 
opened tPAINT probes, we screened different sf-tPAINT probe 
sequences based on speed-optimized27 DNA-PAINT (Extended 
Data Fig. 5). Sequence-optimized probes enabled measurement of 
filopodial dynamics, revealed 100–200 nm of lateral movement of 
a fibroblast filopodium over 1–2 min and enabled measurement of 
the dynamics of filopodia retraction across a 180-s imaging window 
(Supplementary Fig. 7).

We found that the background signal was specific to the cor-
rect imager sequence, confirming that thermal breathing or probe 
impurities produce a small population of transiently open probes 
(Extended Data Fig. 6 and Supplementary Note 3). To address 
this issue, a kinetic filter and a Voronoi tessellation-based density  
filter31 were used to suppress background (Extended Data Fig. 7). 
A detailed description of the filtering algorithm is provided in 
the Methods. An additional consideration in sf-tPAINT is tuning 
the image time window to maximize the number of localizations 
while also minimizing blurring of dynamic features such as the ten-
sion generated by filopodia or the leading edge of spreading cells 
(Supplementary Fig. 5 and Extended Data Fig. 8).

The ‘ring’-like mechanical pattern of platelet integrin forces was 
consistent with the dimensions of high-density actin bundles that 
accumulate at the cell edge as observed by electron microscopy and 
fluorescence microscopy32–34. However, no technique is currently 
capable of sub-100-nm mapping of both traction forces and protein 
assemblies generating those forces. To address this need, we exploited 
multiplexed super-resolution imaging (Exchange-PAINT18), 
which switches out the imagers to super-resolve different targets. 
tPAINT was used to image 14-pN platelet integrin tension, then 
cells were fixed and stained with DNA-tagged phalloidin to allow 
Exchange-PAINT visualization of the actin cytoskeleton (Fig. 2a–d).  
The data showed a thin (330 ± 60 nm) ring of dense F-actin at the 
lamellipodial edge (Fig. 2c–f, seven platelets from two donors). 
Tension at the leading cell edge was highly coupled with this F-actin 
rim (Fig. 2e, white arrow); however, in some regions the tension 
lagged behind the F-actin edge (Fig. 2f, arrowhead). Since the cell 

Fig. 1 | Super-resolved, live-cell imaging of integrin tension. a, Real-time sf-tPAINT probes composed of a ligand (blue) and an anchor (black) strand 
held together using a loop strand (green). When F > F1/2, the stem opens, exposing a cryptic docking site for imager binding (orange). If F < F1/2, then the 
probe refolds, and the docking site is concealed. b, Schematic and energy diagram comparing imager binding to conventional (strained) tension probes 
and sf-tPAINT probes. c, Timeseries showing sf-tPAINT of 8.5-pN integrin forces during the process of platelet activation. RICM is shown in the inset. 
The first frame shows a diffraction-limited reconstruction/tPAINT overlay of the 800–1,000 s time bin. d, Color-coded timeseries showing dynamics of 
lamellipodial tension during spreading (region of interest (ROI) 1 indicated by dotted box). e, Representative expansions of lamellipodial edge tension 
along with linescans reporting FWHM of a Gaussian fit (red line) to a greyscale rendering of sf-tPAINT (800–1,000 s time bin). f, sf-tPAINT image of 
8.5-pN MEF integrin tension. Image time bins are color-coded. GFP-vinculin fluorescence colocalizes with sf-tPAINT single-molecule localizations.  
The data shown are representative of n = 3 independent platelet experiments from three different donors (eight images) and n = 4 fibroblast experiments 
(ten images). AU, arbitrary units; FWHM, full-width at half-maximum.
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edge protruded rapidly in some cases (white arrow, Fig. 2d,e), it is 
possible that regions where the tension lagged behind the actin rim 
are areas of rapid actin polymerization in which the tension has not 
yet advanced to the ring edge.

We posited that the cell edge tension is driven by Arp2/3-mediated 
branching actin polymerization, as loss of branching polymerization 
causes platelets to lose lamellipodia35, and Arp2/3 localizes to the 
lamellipodial edge of spreading platelets36. Treating platelets with 
50 µM CK666 (an Arp2/3 inhibitor) abolished platelet lamellipo-
dial rim tension in two platelets, while seven other platelets failed to 

develop lamellipodial ring tension (nine platelets from n = 2 experi-
ments, Fig. 2g,h and Extended Data Fig. 9). The spatially selective 
action of Arp2/3 inhibition can only be resolved using tPAINT as 
the tension-ring structure is ~150-nm wide, not detectable using 
state-of-art TFM (Supplementary Table 4 and Supplementary Fig. 8).  
Pretreating platelets with 50 µM CK666 for 30 min before seed-
ing slowed platelet spreading, abolished the formation of the rim  
tension and often produced platelets with prominent filopodia 
(Fig. 2i and Extended Data Fig. 9). Treating platelets with the myo-
sin light chain kinase inhibitor ML-7 led to a decrease in 8.5-pN 
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mechanical events across the entire cell footprint, including in the 
cell center (Extended Data Fig. 9). Finally, we performed two-color 
force-multiplexed tPAINT (Fig. 2j) to characterize spatial variations 
in platelet forces and found that the lamellipodial edge tension is 
generally less than 21 pN (Fig. 2k,l), further distinguishing force 
generation at the edge from the platelet body.

Due to the short integrin–ligand bond lifetimes (~0.1–20 s), 
tPAINT will not fully record all receptor-mediated mechani-
cal events even when utilizing speed-optimized PAINT (elevated 
Mg2+ and sequence-optimized probes). To eliminate this potential 
issue of undersampling mechanically opened probes, we employed 
DNA tension probes that rupture irreversibly under force. These 
probes, inspired by the tension gauge tether originally developed 
by Wang and Ha37, enable accumulated-tPAINT imaging (Fig. 3a). 
Accumulated-tPAINT probes are composed of a DNA duplex, with 
one oligonucleotide anchored to the substrate while the other was 
modified with cRGD. The anchored strand also contained a cryp-
tic 9-base pair docking sequence. The probe ruptures irrevers-
ibly when F exceeds the mechanical stability of the duplex (Ttol), 
exposing a cryptic docking sequence and allowing imager bind-
ing (Fig. 3a). Because these duplexes rupture irreversibly, imagers 
repeatedly sample the exposed cryptic binding sites, generating 
accumulated-tPAINT images of the force ‘history’ of mechanical 
events where F > Ttol.

We seeded human platelets on the Ttol = 12-pN accumulated- 
tPAINT surface (Fig. 3b) and, after ~10 min, performed 
accumulated-tPAINT. Platelets were imaged in TIRF excitation 
mode at 5 Hz over a duration of 25 min with 2.5 nM Cy3B imager. As 
expected, single-molecule Cy3B imager localizations were enhanced 
at the platelet-surface contact area (Supplementary Video 2 and 
Extended Data Figs. 2 and 3), with an average signal-to-background 
enhancement ratio of ~17. Overlaying the diffraction-limited recon-
struction (Fig. 3c) with the accumulated-tPAINT image validated 
the improved resolution (Fig. 3d). Specifically, we identified the ten-
sion footprint of a platelet filopodium measuring 89 nm in width 
(Fig. 3e,f). The platelet data shown in Fig. 3 were collected with 
~10-nm (0.09 pixel) precision (determined by nearest-neighbor 
analysis38, Supplementary Fig. 9), matching the typical precision 
metrics for DNA-PAINT39.

We also produced accumulated-tPAINT maps of MEF traction 
forces (Fig. 3g–l), showing filopodial-generated tension ~74 nm in 
width (Fig. 3j,k). Because accumulated-tPAINT maps static fea-
tures, its resolution is likely akin to the resolution of conventional 
DNA-PAINT. We were able to resolve ruptured probes separated by 
~25 nm within the MEF tension footprint (Fig. 3i). To determine 
the potential spatial resolution of tPAINT, we characterized the dis-
tribution of tension probes on the surface (Extended Data Fig. 10).  
The density of probes on the surface was 2,364 ± 255 probes per 
μm2, suggesting that probes may be spaced as closely as 20 nm 
apart on the surface. DNA-PAINT imaging of a surface coated with 
open docking sites showed that probes are not evenly distributed; 
thus probe distribution likely sets the spatial resolution of tPAINT 
(Extended Data Fig. 10). Using other types of chemistry to immo-
bilize probes more uniformly and densely on the coverslip may  
further improve the spatial resolution of tPAINT40.

Discussion
The current standard technique for measuring cellular forces 
is TFM, which calculates traction stresses in deformable poly-
mer films with ~700-nm spatial resolution29,41,42 (Supplementary  
Table 4). tPAINT offers a complementary approach, mapping 
molecular (piconewton) mechanical events with up to 25-nm 
resolution. In the context of molecular tension probes, a single 
report used Bayesian analysis of blinking and bleaching (3B)  
imaging for super-resolved mechanical measurements, but 3B 
is computationally intensive, susceptible to photobleaching, not 

suitable for long-term cellular imaging and offers lower spatial 
resolution43,44.

A key concept in tPAINT is mechano-selection22 which is the sub-
stantially enhanced (over an order of magnitude) binding of imager 
to mechanically triggered probes over background. Therefore, it 
is important that tPAINT probes are thermally stable enough to 
avoid excessive background signal due to (nonmechanical) probe 
breathing. Extended Data Fig. 3 and Extended Data Fig. 6 quantify 
background localizations in tPAINT and underscore this point. The 
sf-tPAINT probes provide a means of super-resolved dynamic mea-
surements of cellular forces. This is a key feature, because the mag-
nitude, spatial organization, timing, frequency and history of forces 
influence signaling outcomes, as was recently shown in T cells45 and 
in fibroblast adhesions46. The likelihood of capturing mechanical 
events in sf-tPAINT depends on bond lifetime and force lifetime in 
relation to the imager sampling rate, which may be up to ~0.3 s−1 in 
speed-optimized PAINT27.

Given that accumulated-tPAINT probes rupture irreversibly, 
this probe offers high spatial resolution with potentially unlimited 
sampling of force-exposed docking sites. This improved resolution 
will be important in imaging fixed samples, where temporal infor-
mation is not needed and where Exchange-tPAINT is integrated  
in the workflow.

To demonstrate the capabilities of tPAINT we have mapped 
platelet and fibroblast integrin tension, revealing dynamic 
nanoscale features, such as a rim of tension at the spreading edge of 
platelets and scanning filopodial tension. We also demonstrate two 
types of multiplexed tPAINT: mapping two thresholds of tension 
simultaneously or alternatively by performing Exchange-tPAINT 
to correlate integrin tension with the F-actin architecture driving 
it. Pharmacological studies confirm that platelet lamellipodial ten-
sion is driven by the Arp2/3 complex mediating actin branching. 
This ability to simultaneously super-resolve mechanical events and 
cytoskeletal structure is powerful; thus, we anticipate that tPAINT 
will become a workhorse tool linking structural biology to mech-
anobiology. One limitation in tPAINT is the lack of orientation 
information, but this limitation will likely be resolved upon integra-
tion of recently developed cellular force polarization imaging tech-
niques to reveal three-dimensional force vectors of DNA probes22,47. 
Another limitation can be summarized as a trade-off between 
time and resolution. Real-time imaging undersamples mechanical 
events but offers dynamical information in live cells; conversely, 
accumulated-tPAINT will sample all mechanical events at the cost 
of temporal resolution. Future speed optimizations in PAINT will 
alleviate this trade-off, enabling molecular force imaging combined 
with spatial mapping of the cell’s machinery in real-time.
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Methods
Materials. Cy3B-NHS ester (PA63101) was acquired from GE Healthcare Life 
Sciences. DNA was custom synthesized by Integrated DNA Technologies. Cyc
lo[Arg-Gly-Asp-d-Phe-Lys(PEG-PEG)] (PCI-3696-PI), elsewhere abbreviated 
as cRGD, was acquired from Peptides International. Streptavidin (S000–01) 
was obtained from Rockland-Inc. µ-Slide VI0.4 six-channel slides (80606) and 
25 × 75 mm2 glass coverslips (10812) were purchased from Ibidi. N-hydroxyl 
succinimide-5 kDa PEG-biotin (NHS-PEG-biotin, HE041024–5K) was purchased 
from Biochempeg. N-hydroxyl succinimide-5kDa mPEG (NHS-mPEG, PG1-SC-
5k-1) was purchased from Nanocs. Sulfo-N-hydroxyl succinimide-acetate 
(sulfo-NHS-acetate, 26777) was purchased from Thermo-Fisher. 
(3-Aminopropyl)triethoxysilane (APTES, 440140, 99% purity) was purchased 
from Sigma-Aldrich. TetraSpeck beads were purchased from Thermo-Fisher 
(T7279). Phalloidin-amine was purchased from Santa-Cruz Biotechnology 
(sc-397330). All other reagents and materials (unless otherwise stated) were 
purchased from Sigma-Aldrich and used without purification. All buffers were 
prepared with 18.2-MΩ nanopure water.

Surface preparation. tPAINT surface preparation was modified from previously 
published protocols3. Briefly, rectangular glass coverslips (25 × 75 mm2) were 
cleaned using piranha solution. Caution: piranha can be explosive when mixed 
with organics. The piranha solution was prepared using a 1:3 mixture of H2O2 
and H2SO4. Slides were then washed in six successive beakers of nanopure water 
and then etched in a beaker of KOH (0.5 M) for 1 h in an ice-filled sonicator. 
The coverslips were washed six times using nanopure water, followed by three 
successive washes using ethanol. In a separate beaker of ethanol, slides were 
reacted with 3% v/v APTES for 1 h. Coverslips were then washed three times 
with ethanol and dried under a stream of N2 gas. Slides were then reacted with 
cloud-point NHS-PEG-biotin (10% w/v) for 1 h in 0.5 M K2SO4 and 0.1 M 
NaHCO3 (pH 9). Next, slides were washed three times with nanopure water and 
reacted for 30 min with NHS-mPEG (5% w/v) and sulfo-NHS-acetate (1% w/v) 
in 0.5 M K2SO4 and 0.1 M NaHCO3 (pH 9) to consume any unreacted amines on 
the surface. Slides were dried under N2 gas, and then stored at −80 °C for up to 
2 weeks before use.

Imaging chamber assembly. Before imaging, the µ-Slide VI0.4 six-channel slide 
was adhered on the 5 kDa PEG-biotin surface. To further reduce nonspecific 
DNA binding during the imaging, the micro-channels were passivated with 
5% v/v Tween 20 in 10 mM Tris buffer, pH 8, with 50 mM NaCl for 15–30 min 
(refs. 48,49). The channels were washed with 1× PBS and filled with 50 µg ml−1 
streptavidin for a 1-h incubation. The channels were then washed with 1× PBS 
and incubated with 1 µM DNA probe solutions for 1 h. For force-multiplexing 
experiments, the surfaces were incubated with two tension probes, each at 1 µM 
concentration. Finally, the channels were washed with cell-imaging buffer before 
imaging (Tyrode’s buffer for platelets, FluoroBrite DMEM Media, A1896701, 
Thermo-Fisher for fibroblast experiments).

DNA hybridization. DNA oligonucleotides were hybridized at 200 nM or 2 µM in 
a 0.2-ml Thermowell tube. DNA was heated to 90 °C and then cooled at a rate of 
1.3 °C min−1 to 35 °C.

Platelet handling. Venous blood was obtained from healthy adult human 
volunteers by venipuncture into 3.8% trisodium citrate. Human platelet-rich 
plasma was prepared via centrifugation (12 min, 140g) of whole blood. Platelet-rich 
plasma was collected following the spin, diluted to 10 ml in PIPES saline and 
treated with 12 μl of PGE1 (500 µM) to prevent platelet activation. The solution 
was inverted gently several times to mix the PGE1 into solution and then 
centrifuged at 1,900g for 8 min. The supernatant was discarded, and the platelets 
were resuspended in 400 μl of Tyrode’s buffer for 5 min before an additional 600 μl 
of Tyrode’s buffer was added and mixed gently to resuspend the platelet pellet. 
Platelets were incubated at room temperature for at least 30 min before beginning 
experiments.

Cell culture. MEFs were cultured according to American Type Culture Collection 
guidelines. Briefly, cells were cultured in DMEM supplemented with penicillin/
streptomycin and 15% fetal bovine serum (v/v). Cells were passaged every 2–3 d  
as required.

Single-molecule localization imaging for tPAINT. Imaging was accomplished  
on a Nikon Eclipse Ti microscope, operated by Nikon Elements software, using  
a 1.49 numerical aperture (NA) CFI Apo ×100 objective, perfect focus system  
and a TIRF laser launch with 75 mW and 561 nm. A Chroma quad cube  
(ET-405/488/561/640 nm Laser Quad Band) and an RICM (Nikon: 97270)  
cube were used for imaging. Widefield epifluorescence illumination was provided 
by an X-Cite 120 lamp (Excelitas). An Andor iXon Ultra 897 electron-multiplying 
charge-coupled device was used for image acquisition. Lasers were operated in 
TIRF mode for all acquisitions.

Images were acquired using RAM capture via a Nikon Fast Timelapse 
acquisition. Cameras were operated at 17-MHz refresh rate with an 

electron-multiplying gain of 300 and a 200-ms exposure time. A ×1.5 lens 
introduced into the optical path allowed imaging with a pixel size of 110 nm. For 
time-resolved measurements, Nikon JOBS was used to alternate between capturing 
300 frames of single-molecule fluorescence signal and then one RICM image and 
one epifluorescence GFP image, enabling tracking of the cell position via widefield 
microscopy throughout the acquisition. The individual 300-frame single-molecule 
image stacks were then stitched back together and analyzed in Picasso. Four-color 
TetraSpeck beads were used as fiducial markers.

For force-multiplexing experiments data were acquired using the same 
microscope described in this section with the following modifications: orthogonal 
DNA imagers labeled with Atto 488 and Cy3B were employed, single-molecule 
localizations were collected simultaneously utilizing an Andor Tucam system with 
dual iXon Ultra 897 electron-multiplying charge-coupled devices, and fluorophores 
were excited simultaneously with 488-nm and 561-nm TIRF illumination.

The exact imaging conditions used for all images in the main text are provided 
in Supplementary Table 3.

Exchange-tPAINT. tPAINT imaging of the platelet integrin tension was acquired 
before fixation with 37.5 mM Mg2+ and 7.5 nM Cy3B imager. The cells were then 
fixed with 4% formaldehyde solution on the microscope for 10 min without 
disturbing the sample. The channel was washed three times with 1× PBS, and 
cells were permeabilized with 0.1% Triton X-100 in 1× PBS for 5 min at room 
temperature. After permeabilization, the cells were stained with 1 µM phalloidin 
tagged with a DNA dock for 15 min and the channel was gently washed with 
imaging buffer three times. Lastly, Cy3B imager strand complementary to the 
phalloidin-DNA dock was added at 1 nM for F-actin imaging. F-actin DNA-PAINT 
images were acquired at 5 Hz for 60 min. Actin and tPAINT images were registered 
using tetraspeck beads as fiducial markers in Picasso.

Image processing. Image processing was performed in MATLAB 2019a 
(MathWorks) and in Picasso17, a software that is freely available via the Jungmann 
laboratory website. The bioformats toolbox enabled direct transfer of Nikon 
Elements image files (.nd2) into the MATLAB environment. Drift correction was 
performed in Picasso by several consecutive rounds of redundant cross correlation. 
All ‘diffraction-limited’ reconstructions displayed in this paper were created in 
Picasso by convolving the single-molecule localizations with a 1-pixel Gaussian 
blur to mimic the point spread function of the microscope.

Due to the presence of background, nonmechanical signal from sf-tPAINT 
probe ‘breathing’ during experiments, it is necessary to filter the tPAINT 
single-molecule localization data. Accordingly, we employed filtering algorithms 
to distinguish between force-mediated signal and background signal (Extended 
Data Fig. 7). Briefly, we applied a kinetic filter to eliminate localizations associated 
with surface defects, dust or other contaminants on the surface. These localizations 
possess brief dark times (very high apparent imager on rate, kon) or prolonged 
bright times (very low imager off rate, koff). To remove these localizations,  
the single-molecule localizations were binned into 3× oversampled pixels  
(3 oversampled pixels per 1 physical pixel on detector). Single localization events 
were identified as consecutive frames in which single-molecule localizations 
occurred within each oversampled pixel, or within its eight immediate neighbors. If 
more than 14 events occurred within 25 frames, all of the component events were 
removed from the dataset. This treatment does not alter the single-molecule events 
that originate from DNA–DNA binding because the expected dark time between 
single-molecule events is 10–100 s for 10 nM imager concentration; thus, multiple 
binding events within 5 s are unlikely. Additionally, the bond lifetime of the imager 
and the docking sites is too short to produce 14 consecutive bright frames. After 
the kinetic filter, we employed a Voronoi tessellation density filter to remove 
sparse localizations31, reasoning that cell tension will produce denser localizations 
than the cell-free background (Extended Data Fig. 7). We computed the Voronoi 
tessellation of the single-molecule localization dataset and then assigned a first 
rank density to each point. A background density was calculated as the average 
localization density within a user-defined cell-free region of the substrate. We 
then removed all single-molecule localizations with a first rank density of less 
than 1–15× the background localization first rank density. This procedure may 
‘erode’ edge localizations, sharpening spatial features; thus, it is important to use 
the lowest possible Voronoi density filter that produces high-quality images. The 
effects of different density filters are displayed in detail in Extended Data Fig. 7.  
A spatial density filter of 3× the background was employed for the data displayed 
in Fig. 1, a 2× filter for the data in Fig. 2 and a 5× density filter was employed for 
the data displayed in Fig. 3.

For Tucam experiments, including simultaneous tPAINT-SRRF and 
force multiplexing, the single-molecule localization lists were registered after 
single-molecule localization in MATLAB. Localizations corresponding to 
TetraSpeck beads were manually identified and used as fiducial markers to apply a 
projective registration to the single-molecule dataset.

Synthesis. The sequences of all strands are provided in Supplementary Table 1.  
Briefly, 100 nmol of c(RGDfK(PEG-PEG)) was reacted with approximately 150 nmol  
of NHS-azide in dimethylsulfoxide overnight. cRGD-N3 was purified via  
reverse-phase HPLC with a Grace Alltech C18 column (1 ml min−1 flow rate; 
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solvent A: 18.2 MΩ Nanopure water + 0.05% trifluoroacetic acid (TFA), solvent B: 
acetonitrile + 0.05% TFA; starting condition: 90% A + 10% B, 1% per min gradient B) 
(Supplementary Fig. 2). cRGD-N3 was ligated to the tension probe ligand strand 
via 1,3-dipolar cycloaddition reaction. Briefly, 5 nmol of alkyne ligand strand was 
reacted overnight with ~75 nmol of cRGD-N3 in the presence of 0.1 M sodium 
ascorbate and 0.1 mM Cu-THPTA. The product was purified with a P2 size 
exclusion column, and then using reverse-phase HPLC with an Agilent Advanced 
oligo column (0.5 ml min−1 flow rate; solvent A: 0.1 M triethylammonium acetate 
(TEAA), solvent B: acetonitrile; starting condition: 90% A + 10% B, 0.5% per min 
gradient B) (Supplementary Fig. 2). Using this synthetic procedure (NHS-azide 
addition to ligand followed by 1,3-dipolar cycloaddition to alkyne DNA),  
any alkyne DNA could be conjugated to the cRGDfK peptide in a highly  
efficient manner.

Imager strands were dried and reacted overnight with a 15× excess of 
Cy3B-NHS dissolved in 1 µl of dimethylsulfoxide. The total reaction volume was 
10 µl, composed of 1× PBS supplemented with 0.1 M NaHCO3. The reaction pot 
was purified by a P2 size exclusion gel to remove unreacted dye followed by HPLC 
purification (0.5 ml min−1 flow rate; solvent A: 0.1 M TEAA, solvent B: acetonitrile; 
starting condition: 90% A + 10% B, 1% per min gradient B) to purify products 
(Supplementary Fig. 2).

The retention times of all products and starting reagents are shown in the 
HPLC spectra in Supplementary Fig. 2, and in Supplementary Table 2.

To synthesize DNA docking site-tagged phalloidin, excess TCO NHS 
ester was added to 20 nmol of phalloidin-amine in 20 µl of dimethylsulfoxide 
containing 10% 10× PBS. The solution was vortexed briefly, then reacted at 
50 °C for 1 h. The product was purified by HPLC and identity was confirmed 
by electrospray ionization mass spectrometry. Methyltetrazine-PEG4-azide was 
then functionalized to alkyne-functionalized DNA using copper(I)-catalyzed 
azide–alkyne cycloaddition. Briefly, 1 mg of methyltetrazine-PEG4-azide was 
dissolved in 20 µl of 1:4 dimethylsulfoxide/H2O and warmed to 50 °C. The 
copper reaction mixture was prepared in a separate tube by combining, in the 
following order, 1 equiv. of 20 mM CuSO4, 2 equiv. of 50 mM THPTA and 5 equiv. 
of 50 mM ascorbic acid. The reaction mixture was then added to 15 nmol of 
DNA in water and warmed to 50 °C. Once warmed, the solution was added to 
the methyltetrazine-PEG4-azide with dropwise addition of dimethylsulfoxide 
to maintain solubility. The reaction proceeded at 50 °C for 2 h and the resulting 
product was purified using P2 gel filtration. Finally, TCO phalloidin and 
methyltetrazine-functionalized DNA were each dissolved in 10 µl of 10× PBS and 
combined to make the final DNA docking site-conjugated phalloidin. The reaction 
proceeded at room temperature overnight and the resulting product was purified 
by HPLC.

Origami design and synthesis. Single-stranded scaffold p7560 was prepared from 
M13 phage using a previously reported method50,51. A 16HB rod was designed 
in caDNAno, based on a 4 × 4-square lattice cross-section. To synthesize 16HB, 
a tenfold excess of staple strands was mixed with p7560 scaffold strand (10 nM) 
in folding buffer (5 mM Tris, 1 mM EDTA, 10 mM MgCl2) with a total volume of 
50 µl. The mixture was denatured at 85 °C for 10 min, followed by a slow anneal 
from 60 °C to 25 °C over 18 h (−1 °C per 30 min). 16HB was purified from excess 
staples using agarose gel electrophoresis (0.67%) in 0.5× TBE + Mg buffer (45 mM 
Tris, 45 mM boric acid, 1 mM EDTA, 10 mM MgCl2). 16HB structures were 
characterized by agarose gel electrophoresis (1.5%) and negative-stain transmission 
electron microscopy imaging (1% uranyl formate).

Determination of DNA surface density. We adapted a surface density 
quantification assay that was previously published52. This protocol requires  
the preparation of a supported lipid membrane, because the bilayer structures 
provide a known molecular density on a glass slide surface that can be used  
to quantify DNA surface density. The protocol requires three main steps  
outlined here:

	1.	 Small unilamellar vesicle (SUV) preparation to determine DNA surface 
density. SUVs were prepared by extrusion. 1,2-dioleoyl-sn-glycero-3-p
hosphocholine (DOPC) (850375C, Avanti Polar Lipids) and Texas Red (TR) 
1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium 
salt (TR-DHPE) were mixed in ~100 µl of chloroform at 100 mol% DOPC 
or 99.5 mol% DOPC and 0.5 mol% TR-DHPE. Chloroform was evaporated 
by rotary evaporation, and lipid cakes were dried under vacuum and under 
ultra-high-purity nitrogen. Lipids were resuspended in water at 2 mg ml−1 and 
sonicated for 30 s before three freeze–thaw cycles. SUVs were extruded 10× in 
a 10-ml LIPEX Extruder (Transferra Nanosciences) fit with a 0.08-μm poly-
carbonate filter (WHA110604, Whatman) and a drain disc (WHA230600, 
Whatman). The final concentration of TR in liposomes was measured on a 
Thermo Scientific Nanodrop 2000c spectrophotometer.

	2.	 Supported lipid bilayer (SLB) preparation. SLBs were formed in untreated 
glass-bottom 96-well plates (265300, Nunc). Glass was etched for 1 h in 2.6 M 
sodium hydroxide and washed with 5 ml of nanopure water and 5 ml of  
1× PBS. TR-labeled and unlabeled SUVs were added in known ratios for 
~10 min to form SLBs containing 0.01–0.06 mol% TR-DHPE. SLBs were 
washed with 5 ml of nanopure water and 2.5 ml of 1× PBS. SLBs were imaged 

in nanopure water. When used for passivation, SLBs were prepared with 
100 mol% DOPC.

	3.	 Bulk probe density calculation.The bulk probe density was determined by 
measuring the fluorescence intensity of single-stranded tension gauge tethers 
tagged with Cy3B and comparing this value with a fluorescence calibration 
curve generated by measuring the intensity of SLB standards containing 
TR-labeled phospholipids. The TR-DHPE number per micrometer was esti-
mated using the DOPC footprint in a membrane53. The Cy3B-DNA and TR 
fluorescence were equated by the F-factor, FCy3B-TR, which is defined by:

FCy3B-TR ¼ ICy3B-DNA
ITR-DHPE

FCy3B-TR was determined by measuring the intensity of free dye-labeled DNA 
(ICy3B-DNA) and TR-labeled SUVs (ITR-DHPE) in nanopure water at 50–500 nM 
fluorophore. To avoid surface adsorption, glass was passivated with a DOPC SLB 
before buffer exchanging with the sample. In-solution images were collected 5 μm 
above the surface.

Statistics. Two-tailed, two-sample t-tests were used to compare: (1) the means 
of the localization density on sf-tPAINT surface versus the strained surface 
(Extended Data Fig. 1); and (2) the means of the localization density on the 
accumulated-tPAINT surface versus sf-tPAINT surface (Extended Data Fig. 3). 
Two-way analysis of variance was used to compare: (1) the mean of the ratios of 
cell/background density (Extended Data Fig. 5); and (2) the means of background 
localization produced by scrambled imager versus tPAINT imager (Extended  
Data Fig. 6).

Human subjects statement. All procedures using donor-derived human platelets 
were approved by the Institutional Review Board of Children’s Healthcare 
of Atlanta/Emory University. Written, informed consent was received from 
participants before their inclusion in studies.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the main figures in this work are available at https://doi.
org/10.15139/S3/WB168Q. Other data that support the findings of this study 
are available from the corresponding authors upon reasonable request. Further 
information regarding the experimental design may be found in the Nature 
Research Reporting Summary.

Code availability
Filtering algorithms are derived from published methods31. The code is available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Strain-free (sf)-tPAINT probe modeling and testing shows significant advantages over conventional hairpin probes 
(strained-tPAINT probes). a, Schematic of binding of imagers to strain-free (sf-tPAINT) and conventional/strained probes. b, Total energy and change 
in energy as a function of applied force as predicted by the kinetic model described in Supplementary Note 2. c, Docking site occupancy as a function 
of applied F for strained (red), and sf-tPAINT probes (green) at 10 nM imager and (d) for varying imager concentration. Force impedes imager binding 
to strained but not sf-tPAINT probes. e–h, Experimental validation that sf-tPAINT probes outperform strained probes. e, Strain-free and f, conventional 
(strained) probes tagged with Cy3B-BHQ2 report pN tension as fluorescence. Images representative of n = 6 (e) and n = 3 experiments (f). g, Strain-free 
and h, conventional/strained probes were incubated with 10 nM Cy3B-imager and imaged in TIRF excitation. These images were reconstructed from  
5000 frames of single molecule localizations. Data shown in g, h are from paired experiments using different fluidic channels on the same glass coverslip 
and using the same platelet donor. The results shown are representative of n = 3 experiments. i–k, Quantification of single molecule localizations  
(μm-2 s-1) for strained and sf-tPAINT probes. Results are representative of n = 4 (11 images) independent experiments for strained tPAINT surfaces and 
n = 6 independent sf-tPAINT surfaces (8 images). Data in k is displayed as mean with 95% CI. Cell (strained tPAINT): Mean= 0.29, 95% CI 0.12–0.46; 
Background (strained tPAINT): Mean= 0.06, 95% CI 0.04–0.07; Cell (sf-tPAINT): Mean= 1.09, 95% CI 0.89–1.29; Background (sf-tPAINT):  
Mean= 0.22, 95% CI 0.16–0.27. To determine the statistical significance, student t-test was applied to the data and the exact p-values are calculated  
(2 tailed, 2 sample). Cell (strained tPAINT) vs Background (strained tPAINT): 1.5×10–2, Cell (sf-tPAINT) vs Background (sf-tPAINT): 7.2×10−7,  
Cell (strained tPAINT) vs Cell (sf-tPAINT): 2.3×10−6, Background (strained tPAINT) vs Background (sf-tPAINT): 8.4×10−5.
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Extended Data Fig. 2 | Collage of examples showing accumulated-tPAINT and ~8.5 pN sf-tPAINT integrin tension maps for MEFs and human platelets. 
Representative examples of images for MEF GFP-vinculin cells and human platelets displayed with a 5x density filter and kinetic filter. Images are 
representative of: 12pN Ttol accumulated-tPAINT maps, platelets, n = 8 replicates (22 images), and fibroblasts, n = 9 replicates (24 images); 7.3pN sf-tPAINT 
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fibroblast experiments (75 mM Mg2+ 10 images).
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Background (accumulated-tPAINT) vs Background (strain-free): p = 5.2×10−3, Background (accumulated-tPAINT) vs Background (High [Mg2+] strain-free): 
p = 1.1×10−6, Background (strain-free) vs Background (High [Mg2+] strain-free): p = 1.7×10−5.
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Extended Data Fig. 4 | Analysis of lamellipodial and focal adhesion dynamics using time resolved 8.5pN sf-tPAINT. a, 8.5 pN tPAINT integrin forces 
(red points) and RICM (grey scale image) were simultaneously imaged in a spreading human platelet. Each RICM image was collected at the beginning 
of the time window, while the 8.5pN sf-tPAINT data represents the accumulated signal in a 60 sec interval. b, Zoom-in images of the region highlighted 
with yellow box in (a). The green arrow denotes the formation of a filopodium and the force associated with extension of this structure. For frames 
corresponding to minutes 1–10, the cell edge in the previous frame is highlighted with a dashed yellow line. Note that the filopodial forces are still resolved 
even after lamellipodial spreading. c, Full cell view of a mouse embryonic fibroblast (MEF); d, e, show zoom-ins of the regions highlighted with yellow 
and blue boxes, respectively. Note that the focal adhesion (as indicated by the vinculin-GFP data) is offset from the mechanical localizations. The tension 
signal extends beyond the tip of the focal adhesions away from the cell body, and this is clear both in the full view of the cell (c), as well as the zoom in 
panels (d) and (e). This could be consistent with previous reports by Waterman and colleagues which found that the centroid of focal adhesion traction 
stresses is consistently ~1μm distal to the focal adhesion centroid29. This finding is also consistent with previous publications from our lab28, and the 
diffraction limited tension reported in Supplementary Fig. 3 of this work. Data shown is representative of: platelets, n = 3 independent experiments  
(5 images); fibroblasts, n = 3 independent experiments (5 images).
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Extended Data Fig. 5 | Design of speed-optimized strain-free tPAINT probes. a, Schematic of sf-tPAINT probes. b, NUPACK modeling of self-base-pairing 
propensity of the imager. c, Sequences/designs of speed-optimized sf-tPAINT docking sites (blue strand) that avoid self-interaction. Imager docking site 
highlighted in pink. d, Representative speed sf-tPAINT images of MEF GFP-vinculin cells imaged in cell culture media (~0.8 mM Mg2+) and in 75 mM Mg2+ 
supplemented media. e, NUPACK modeling of speed sf-tPAINT probes. f, Ratio of tPAINT localizations versus background localizations. Each point in (f) 
is a single cell. Number of replicates: v1_no Mg2+ (5 cells, n = 3 experiments), v1_ Mg2+ (3 cells, n = 3 experiments), v2_no Mg2+(6 cells, n = 3 experiments), 
v2_Mg2+ (3 cells, n = 3 experiments), v3_no Mg2+ (8 cells, n = 3 experiments), v3_Mg2+(5 cells, n = 3 experiments), and v3_spacer_no Mg2+(16 cells, n = 4 
experiments), v3_spacer_Mg2+ (8 cells, n = 4 experiments), v3_control_no Mg2+ (4 cells, n = 4 experiments), v3_control_Mg2+ (7 cells, n = 3 experiments). 
All scale bars are 5 μm. Data were compared via a 2-way ANOVA. v3_spacer (in the no added Mg2+ case) is statistically different from v1 (p = 5.3×10−10), 
v2 (p = 6.4×10−8), v3 (p = 0.0022), and v3_control (p = 2.2×10−6). The v3_spacer exhibits the greatest signal-to-noise ratio. Data in f is displayed as mean 
with 95% CI. v1 (no Mg2+) Mean= 1.21, CI 0.96–1.46, sd 0.20; v1 (Mg2+) Mean= 2.54, CI 0.47–5.55, sd 1.21; v2 (no Mg2+) Mean= 3.60, CI 2.24–4.95, 
sd 1.29; v2 (Mg2+) Mean= 7.17, CI 6.23–8.11, sd 0.38; v3 (no Mg2+) Mean= 7.76, CI 4.49–11.02, sd 3.90; v3 (Mg2+) Mean= 5.73, CI 4.81–6.66, sd 0.74; 
v3_spacer (no Mg2+) Mean= 12.82, CI 10.86–14.78, sd 3.67; v3_spacer (Mg2+) Mean= 6.72, CI 5.22–8.22, sd 1.80; v3_control (no Mg2+) Mean= 3.43,  
CI 2.09–4.78, sd 0.84; v3_control (Mg2+) Mean= 7.34, CI 4.95–9.74, sd 2.59.
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surfaces and (d) sf-tPAINT probes incubated with 5 nM scrambled and specific imagers. The average localizations (µm−2s−1) were quantified at 2.5, 5, 
and 10 nM scrambled and specific imagers for (e) accumulated-tPAINT (n = 4 independent experiments) and (f) sf-tPAINT surfaces (n = 3 independent 
experiments). Localization density was computed for 5 regions per image to compute an average (black points). Mean ± standard deviation is noted above 
each category. Error bars are 95% CI. 2.5 nM (accumulated-tPAINT, Scrambled): Mean= 0.0040, 95% CI 0.0015–0.0066; 2.5 nM (accumulated-tPAINT, 
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2.5 nM (sf-tPAINT, Specific): Mean= 0.022, 95% CI 0.0094–0.034; 5 nM (sf-tPAINT, Scrambled): Mean= 0.0035, 95% CI 0.0011–0.0059; 5 nM 
(sf-tPAINT, Specific): Mean= 0.028, 95% CI 0.0041–0.051; 10 nM (sf-tPAINT, Scrambled): Mean= 0.0037, 95% CI 0.0024–0.0050; 10 nM (sf-tPAINT, 
Specific): Mean= 0.044, 95% confidence interval −0.0048–0.094. Data were compared via a 2-way ANOVA. For localization on accumulated-tPAINT 
probe surface: 2.5 nM scramble versus 2.5 specific (p = 0.9968); 5 nM scramble versus 5 nM specific (p = 0.7527); 10 nM scramble is statistically different 
than 10 nM specific (p = 0.0115). For localization on sf-tPAINT probe surface: 2.5 nM scramble versus 2.5 specific (p = 0.3153); 5 nM scramble versus 5 nM 
specific (p = 0.1051); 10 nM scramble is statistically different than 10 nM specific (p = 0.0023).
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Extended Data Fig. 7 | Schematic showing the filtering algorithm and effect of filtering on representative data. a, First, tPAINT data was subjected to 
kinetic and density-based filtering prior to analysis. Kinetic filtering was accomplished via a 25-frame moving window of time traces of localizations within 
35 nm oversampled pixels. If 14 events occurred within the 25-frame window (corresponding to 2.8 s of accumulated single molecule bond lifetime), all 
the component events were removed. Second, a Voronoi-tessellation assigned a polygon, comprised of all points closer to that localization than to any 
other localization, to each tPAINT localization. A local “density” was computed for each localization. Localizations with density lower than 2x, 5x, or 10x 
the background density were removed to produce the final tPAINT image. b, Demonstration of how increasingly stringent density filters (2x, 5x, 10x, and 
15x the background localization density) affects the tPAINT signal. In the overlay, red points indicate localization density that has been removed by the 
density filter while white regions indicate localizations that passed the density threshold. The high zoom overlay displays the raw localizations as points, 
not gaussians. At the highest density-based filter settings, localizations on the edge of the filopodial extension are removed (high zoom overlay,  
10x and 15x density filter). Scale bars: whole image view, 5 μm; platelet zoom view, 1 μm; high zoom view; 500 nm. The processing described in (a, b) 
above were applied to all tPAINT data reported in this manuscript: platelets sf-tPAINT n = 3 independent experiments, 3 donors, 8 images; fibroblasts  
n = 4 experiments, 10 images; accumulated-tPAINT platelets, n = 8 replicates, 3 donors, 22 images; n = 9 replicates, 24 images.
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Extended Data Fig. 8 | Cellular tension feature dimensions depend on the imaging window in sf-tPAINT. a, Live-cell sf-tPAINT imaging of platelet 
tension displayed using different time windows (ranging from 50 sec to 1000 sec). The apparent length or width of cellular tension features depends on 
the number of frames that are integrated to produce a super-resolved image. To demonstrate this point, we rendered the lamellipodial edge of 3 human 
platelets (from n = 3 independent experiments, 2 platelets shown) and measured the apparent width of the lamellipodial edge tension ring as tPAINT data 
is integrated over various time windows. Super-resolved tPAINT images were rendered as greyscale images, and ring width was measured via linescan 
analysis (black dots). The data were fit to a gaussian via Matlab’s curvefitting tool (blue line). The measured FWHM of the fitted gaussians depends on the 
number of frames integrated to produce the super-resolved tPAINT image. b, Plot showing that the localization density generally increased with increasing 
number of integrated frames. Each colored line shows a unique ROI. c, Plot showing the relation between the FWHM of the tension ring and the number of 
integrated frames. The data shown are from 3 human platelets from n = 3 independent experiments (2 linescans per platelet). In principle, it is desirable to 
use the minimum number of frames possible to render an image in order to minimize feature blurring due to cellular dynamics during the imaging window; 
however, image quality decreases, with localizations becoming more punctate, when fewer frames are integrated. To produce high-quality tPAINT images, 
these considerations must both be balanced. All scale bars are 2 μm.
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Extended Data Fig. 9 | Collage of examples showing sf-tPAINT of human platelets treated with cytoskeletal inhibitors. a, Time-resolved 8.5 pN tPAINT 
of platelets pre-treated with 50 μM CK666 for 30 min before being seeded on sf-tPAINT probes. b, Time-resolved 8.5 pN tPAINT image of platelet before 
and after treatment with 10μM ML-7 (MLCK inhibitor). c, Representative examples of images for cells treated with inhibitors displayed with a 5x density 
filter and kinetic filter. Human platelets treated with vehicle (DMSO) as control (n = 3 independent experiments), human platelets treated with CK666 
(50 μM) after being seeded on the surface (n = 2 independent experiments), human platelets pretreated with CK666 (50 μM) for 30 min before being 
seeded on the surface (n = 3 independent experiments), human platelets treated with ML-7 (MLCK inhibitor, 10 μM) after being seeded on the surface 
(n = 3 independent experiments). Three examples are shown for each condition.
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Extended Data Fig. 10 | Surface density of tPAINT probes on the coverslip. a, DNA-PAINT imaging of docking site coated surfaces (500 pM Cy3B-imager, 
150,000–200,000 frames). Intensity-based peakfinding identified localization clusters (red dots). b, Histogram of nearest-neighbor distances reveals 
average cluster-cluster distance of 43 nm. c, Alternate DBSCAN clustering algorithm (20 localization minimum, 0.05 pixel search radius) identified  
clusters (displayed as colored dots). d, Nearest-neighbor histogram of the centroids of the clusters identified in c reports 55 nm average nearest-neighbor 
distance. Images in a and c are representative of n = 3 independent experiments. e-h, Variations in cluster localization density suggested peakfinding/
DBSCAN did not identify individual docking sites. To count individual docking sites, we performed quantitative-PAINT (qPAINT). e, Calibration DNA origami 
used for calculating imager influx rate and (f) DNA-PAINT image of origami. Images were acquired at 1, 2.5, and 5 nM Cy3B imager (n = 3 independent 
experiments). Plot depicts cumulative distribution function of dark times between imager binding (red) and exponential fit (blue) for selected origamis 
(yellow circles). This analysis calculated kon as 1.2×106 M−1s−1. g, h, qPAINT of tPAINT surface reveal dense, heterogeneous clusters of docking sites on  
the surface (i–l). Quantitative measurements of the surface density of probes were performed to supplement qPAINT and clustering measurements.  
i, j, Fluorescence intensity versus concentration for Texas-red (TR) tagged phospholipid vesicles (5 measurements per concentration per experiment,  
n = 3 independent experiments), and soluble Cy3B-DNA (5 measurements per concentration per experiment, n = 2 independent experiments). Error bars 
are standard deviation. k, F factor calibration (ratio of TR:Cy3B fluorescence). Error bars calculated from the propagated standard deviation of Cy3B-DNA/
TR-DHPE measurements. l, To calculate tPAINT probe density, fluorescence measurements of Cy3B-DNA tPAINT surfaces (5 measurements from 
each of n = 3 independent experiments) were converted into density via the F factor. tPAINT probe density is 2364 + /−255 probes per square micron 
(mean + /-propagated SEM from Cy3B and TR measurements).
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