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ABSTRACT: Tools to image membrane tension in response to
mechanical stimuli are badly needed in mechanobiology. We have
recently introduced mechanosensitive flipper probes to report
quantitatively global membrane tension changes in fluorescence
lifetime imaging microscopy (FLIM) images of living cells. However,
to address specific questions on physical forces in biology, the probes
need to be localized precisely in the membrane of interest (MOI).
Herein we present a general strategy to image the tension of the MOI
by tagging our newly introduced HaloFlippers to self-labeling
HaloTags fused to proteins in this membrane. The critical challenge
in the construction of operational HaloFlippers is the tether linking the flipper and the HaloTag: It must be neither too taut nor too
loose, be hydrophilic but lipophilic enough to passively diffuse across membranes to reach the HaloTags, and allow partitioning of
flippers into the MOI after the reaction. HaloFlippers with the best tether show localized and selective fluorescence after reacting
with HaloTags that are close enough to the MOI but remain nonemissive if the MOI cannot be reached. Their fluorescence lifetime
in FLIM images varies depending on the nature of the MOI and responds to myriocin-mediated sphingomyelin depletion as well as
to osmotic stress. The response to changes in such precisely localized membrane tension follows the validated principles, thus
confirming intact mechanosensitivity. Examples covered include HaloTags in the Golgi apparatus, peroxisomes, endolysosomes, and
the ER, all thus becoming accessible to the selective fluorescence imaging of membrane tension.

■ INTRODUCTION

Mechanobiology, or the study of how living organisms respond
to mechanical stimuli, is a field full of challenges that have just
started to emerge.1−4 One of the reasons for the reluctant
emergence of mechanobiology is the lack of routine small-
molecule chemistry tools to image physical forces in living
systems. The difficulty in creating such mechanosensitive
probes is understandable because Newton’s apple has already
taught us, in the midst of the 1665 Great Plague confinement,
that not the forces as such but only their consequences can be
seen. The challenge to image the tension applied to
biomembranes with general, user-friendly small-molecule
fluorescent probes has recently been addressed with
mechanosensitive “molecular flippers”.5−8 Flipper probes
report quantitatively on tension by responding to the
consequences in biomembrane architecture, including lipid
decompression but mostly reorganization (Figure 1A).5 First
indications of the functional consequences of tension-induced
microdomain assembly and disassembly have already been
identified with regard to signal transduction, that is, the
activation of TORC2,9,10 thus providing a perfect illustration
of the impact of physical forces on biological function.
Flipper probes have been rigorously engineered and tailored

over the years, with 1 being the optimal design, commercially

known as Flipper-TR (Figure 1D).5,8 Flipper-TR is a
planarizable push−pull probe. It is built around two
dithienothiophene “flippers”11,12 that are twisted out of
coplanarity due to repulsion between the methyl groups and
σ holes on sulfur atoms at opposite sides of the connecting
twistable bond.6,13,14 Polarization of the probe is initiated by
endocyclic sulfide and sulfone bridges in the donating and
accepting flippers. They are supported by an exocyclic cyano
acceptor and more complex but essential ether donors that
turn on only once the flipper planarization strengthens the
electron-donating chalcogen bond.
In the twisted form in apolar solvents, the absorption and

excitation maxima of flipper 1 are blue-shifted. In water,
fluorescence is fully quenched, which is important for
minimizing background and artifacts in bioimaging. Mechan-
ical planarization in membranes of increasing order brings the
two flippers into conjugation. This turns on the push−pull

Received: May 24, 2020
Published: July 20, 2020

Research Articlehttp://pubs.acs.org/journal/acscii

© 2020 American Chemical Society
1376

https://dx.doi.org/10.1021/acscentsci.0c00666
ACS Cent. Sci. 2020, 6, 1376−1385

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

D
A

L
IA

N
 I

N
ST

 O
F 

C
H

E
M

IC
A

L
 P

H
Y

SI
C

S 
on

 S
ep

te
m

be
r 

8,
 2

02
0 

at
 1

1:
03

:1
0 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karoli%CC%81na+Strakova%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Javier+Lo%CC%81pez-Andarias"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Noemi+Jime%CC%81nez-Rojo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+E.+Chambers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefan+J.+Marciniak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefan+J.+Marciniak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Howard+Riezman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Naomi+_target+Sakai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefan+Matile"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.0c00666&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acscii/6/8?ref=pdf
https://pubs.acs.org/toc/acscii/6/8?ref=pdf
https://pubs.acs.org/toc/acscii/6/8?ref=pdf
https://pubs.acs.org/toc/acscii/6/8?ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00666?ref=pdf
https://http://pubs.acs.org/journal/acscii?ref=pdf
https://http://pubs.acs.org/journal/acscii?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


dipole, shifts the excitation maximum up to almost 100 nm to
the red, from 421 to 519 nm, and increases the fluorescence
intensity and lifetime. The emission maximum around 600 nm
is nearly mechano-insensitive because the emission always
occurs from a fully planarized excited state.6 This combination
of planarization and polarization in equilibrium in the ground
state often occurs in nature, from lobster pigmentation15−17 to
the chemistry of vision,18−20 but is unexplored in the design of

fluorescent probes. Most other fluorescent membrane probes
operate in the excited state by different mechanisms, such as
intramolecular charge transfer (ICT), twisted intramolecular
charge transfer (TICT), excited-state intramolecular proton
transfer (ESIPT), photoinduced electron transfer (PET),
Förster resonance energy transfer (FRET), and the like.21−28

Changes in flipper lifetimes upon planarization/deplanariza-
tion allow us to image membrane tension using concentration-
independent fluorescence lifetime imaging microscopy
(FLIM). In multicomponent model membranes and biomem-
branes, the application of tension by micropipette aspiration or
osmotic stress causes a linear increase in flipper lifetime. This is
consistent with the dominant response from tension-induced
membrane reorganization.5,29−32 With increasing tension,
unstretchable lipids are sorted out in highly ordered micro-
domains with fully planarized flippers with high oscillator
strength and lifetime (Figure 1A). Disassembly of these
microdomains with decreasing tension then causes the
corresponding decrease in lifetime.
The carboxylic acid at the terminus of amphiphile 1 serves as

an anchoring group in the plasma membrane (Figure 1D).
Substitution of the carboxylic acid by other functional groups,
such as biotin,33 boronic acid,34 and organelle targeting
motifs35 known from the respective trackers,36−38 has been
recently achieved without a loss of function of the
mechanophore. However, the targeting of organelles is neither
uniform nor generally applicable to any membrane of interest
(MOI). Namely, whereas well-established targeting units are
available for lysosomes,39,40 mitochondria,41−43 and the
endoplasmic reticulum (ER),44 such units do not exist for
many other subcellular compartments. To fluorescently image
local tension in any MOI, we decided to develop a universally
applicable targeting strategy based on self-labeling proteins
(Figure 1A−C). These mutated enzymes can be easily
expressed fused to a protein in the MOI inside living cells.
Popular examples include the SNAP-tag,45 CLIP-tag,46 and
HaloTag.47,48 All of them present specific, orthogonal reactivity
and fast kinetics with their corresponding benzylguanine,
benzylcytosine, and chloroalkane ligands.49,50

Since the introduction of HaloTag technology,48 the strategy
has found many applications. Examples include protein
labeling with synthetic ligands48,51,52 or fluorescent dyes to
study biological processes, such as redox signaling,53,54 cell
dynamics,55−58 and protein degradation,59 or to detect specific
ions,60−65 the viscosity,22,66 and the membrane potential18,23

inside compartments of living organisms. They were also used
as covalent long-lived tethers for protein nanomechanics.67−69

Moreover, several biological assays have been established in
recent years that employ HaloTagging as the key step in their
protocols,70−72 including the chloroalkane penetration assay
(CAPA)73−75 for the quantification of cell permeability and
cytosolic delivery. In this report, we explore the use of
HaloTag technology for force imaging in mechanobiology.
Exploiting the specificity of genetically encoded self-labeling
enzymes, HaloFlippers are shown to target and report the
membrane tension changes of various subcellular compart-
ments, which were beyond the reach of traditional targeting
units. These results introduce HaloFlippers as a universal tool
to sense changes in the local tension and order in any MOI.

■ DESIGN AND SYNTHESIS OF HALOFLIPPERS
To localize flipper probes in the MOI using HaloTag
technology, the flippers equipped with chloroalkane ligands

Figure 1. (A−C) Design of HaloFlippers to image membrane tension
in the membrane of interest (MOI). (D) Structure and molecular
mechanism of Flipper-TR 1 and HaloFlippers 2−6. The estimated
tether length (l) is of the fully stretched conformer. (A) A HaloTag is
fused to a protein in the MOI. (B) Chloroalkanes of HaloFlippers
react with the HaloTag to label the MOI. (C) HaloFlippers report the
tension σ applied to the MOI as increasing lifetime τ because the
response is dominated by the planarized flippers in the ordered
microdomains produced by tension-induced phase separation (red)
rather than the deplanarized flippers in the decompressed membrane
(blue). (D) Planarization of the twisted flippers in equilibrium in the
ground state turns on the push−pull system, red shifts excitation
maxima, and increases fluorescence lifetimes.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://dx.doi.org/10.1021/acscentsci.0c00666
ACS Cent. Sci. 2020, 6, 1376−1385

1377

https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00666?ref=pdf


and HaloTag proteins fused to the protein in the MOI are
required (Figure 1A). The reaction between the ligand and a
carboxylic acid in the engineered active site48 should afford an
ester that tethers the flipper to the fusion protein (Figure 1B).
For operational flippers, the tether linking them to the
membrane protein has to be loose enough to allow the
insertion of the probe in the surrounding membrane (Figure 1,
red). Moreover, the tether has to be hydrophilic enough to stay
out of the membrane but lipophilic enough to diffuse passively
across the plasma membrane.23,59,63,76 We chose oligoethylene
glycols of different lengths to identify the best tether:
HaloFlippers 2−5 with a linear oligoethylene glycol containing
24, 16, 8, and 0 monomer repeats (Figure 1D). Control 6 is as
tightly tethered as 5 but as hydrophilic as 3 with an ethylene
glycol 16-mer. Flippers 2−6 were prepared following the
procedures similar to those of 1 (Schemes S1−S4). Reflecting
their higher hydrophilicity, flippers with longer tethers, 2 and
3, were eluted at shorter retention times (Rt) from reverse-
phase high-performance liquid chromatography (HPLC)
compared with 4 and 5, whereas Rt of 6 was similar to that
of 4 (Figures S46−S50).

■ TETHER OPTIMIZATION
The relative partitioning efficiencies Drel of flippers 2−5 were
estimated in large unilamellar vesicles (LUVs) composed of
solid-ordered (So) dipalmitoylphosphatidylcholine (DPPC)
membranes (Table 1 and Figure S2). Flipper 2 with the

longest tether showed poor retention in these artificial lipid
bilayer membranes, whereas 4−6 inserted more efficiently into
the membrane, and flipper 3 showed intermediate behavior.
These results were consistent with their hydrophilicity
estimated from Rt. The phase transition from liquid-disordered
(Ld) to So membranes shifted the excitation maximum of
flippers 2−6 to the red (Figure S2). As described in the
Introduction, this red shift originated from planarization of the
twisted push−pull probes in the ground state, thus confirming
that the mechanosensitivity of flippers 2−6 needed to image
membrane is intact.
The cellular permeabilities of HaloFlippers 2−6 were

evaluated using the recently introduced CAPA,73,74,77 adapted
to high-content fluorescence microscopy (HC-CAPA, Figures
S4−S6).75 HC-CAPA uses HGM cells that are HeLa cells
stably expressing a fusion protein of HaloTag and green

fluorescent protein (GFP) on the outer surface of their
mitochondria.78 These cells were first treated with the
HaloFlippers and then chased with a chloroalkylated rhod-
amine (HRO, Figure S1) that reacts and fluorescently labels all
remaining free HaloTags. HC-CAPA provides rapid access to
the dose−response curves and the EC50 of the respective
substrate. According to EC50 = 34 ± 2 nM, HaloFlipper 2, with
the longest tether, entered the cytosol most efficiently (Figure
2A). With EC50 = 89 ± 14 nM, HaloFlipper 3 with a shorter

tether closely followed. Further shortening of the tether
significantly weakened the cellular uptake, degrading to 3−5
μM for 4−6. Prolongated incubation times from 15 to 45 min
resulted in lower EC50′ values, but the trend remained the
same (Table 1, Figure S6, and Table S2).
The cellular uptake of flippers 2−6 thus increased with

decreasing partitioning. This indicated that entry into the
membranes on one side is less important than release on the
other side, thus implying that flippers that do not reach the
cytosol end up trapped within membranes on the way.
However, partitioning and uptake depended on the molecular
architecture beyond the simple oligoethylene glycol length.
Control 6 is as tightly tethered as 5 but contains an ethylene
glycol 16-mer like 3 (Figure 1D). However, 6 showed similar
partitioning and uptake properties to 5 rather than to 3,
presumably due to entropic reasons (Table 1, Figure 2A).79−81

The validity and significance of these conclusions were
confirmed by comparing the fluorescence intensities of GFP
and flippers 2−6 cell by cell. The large-scale analysis of
statistically significant populations (>1000 analyzed cells per
experiment) revealed perfect correlations with the efficiently

Table 1. Characteristics of HaloFlipper Probesa

Cpdb EC50 (nM)c EC50′ (nM)d Drel
e r2f PCCg

2 34 17 0.23 0.96 0.93
3 89 25 0.39 0.94 0.93
4 4800 130 0.99 0.55 0.85
5 2900 240 1.00 0.35 0.87
6 3600 630 0.81 0.49 0.71

aExpanded version, with errors: Tables S2 and S3. bHaloFlipper
probes. cEffective flipper concentration needed to label 50% of
HaloTags on mitochondria in the cytosol of HGM cells after 15 min
of incubation. Experiments were performed in duplicate. dSame for 45
min of incubation. eRelative partitioning efficiencies of the probes in
solid-ordered membranes of DPPC LUVs, estimated from their
fluorescence intensity. fGoodness of fit correlating flipper and GFP
flourescence, extracted from the linear regression in Figure 2B and
Figure S7. gPearson correlation coefficient between the fluorescence
signal from GFP and HaloFlippers, obtained from the manual analysis
of five to six different cells/probe, as in Figure 2D and Figure S8.

Figure 2. (A) HC-CAPA dose−response curves after 15 min of
incubation of HGM cells with HaloFlippers (HFL) 2 (light blue), 3
(intense blue), 4 (dark blue), 5 (light green), and 6 (dark green). (B)
Fluorescence intensity of GFP (proportional to HaloTag expression)
versus fluorescence intensity of HFL 3 (intense blue) and 5 (light
green) in the whole cells at their EC50′ with linear curve fit (1 dot = 1
cell). Data were automatically analyzed. (C) CLSM images of HGM
cells after incubation with 2−4 (top down) at their EC50. Laser power
and postacquisition image treatment were kept constant. (D) As in
panel C, merged images of HFL (red) and GFP (green). Brightness
and contrast of the fluorescence of HaloFlippers were adjusted to
comparable values. Scale bars: 10 μm. Experiments were performed in
duplicate for panels A and B.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://dx.doi.org/10.1021/acscentsci.0c00666
ACS Cent. Sci. 2020, 6, 1376−1385

1378

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00666?ref=pdf


penetrating flippers 2 and 3 (Figure 2B, Figure S7, Table 1,
and Table S3, r2 > 0.93). In clear contrast, flippers 4−6 showed
poor correlation with GFP fluorescence (r2 < 0.56). These
results were consistent with the highly selective labeling of the
HaloTag-GFP fusion protein by 2 and 3 and the less selective
staining by 4−6.
The analysis of the fluorescence microscopic images revealed

identical trends (Figure 2C,D). The subcellular colocalizations
of the fluorescence signals from GFP and flippers were
quantified as Pearson correlation coefficients (PCCs). PCCs as
high as 0.93 were extracted for the operational flippers 2 and 3,
whereas the rest exhibited more modest values, down to 0.71
for control 6 (Table 1, Figure S8). In confocal laser scanning
microscopy (CLSM) images of HGM cells, flipper 3 was
brighter than 2 (Figure 2C). Because flipper fluoresces only
inside lipid bilayer membranes, this result suggested that the
partitioning of the HaloTagged flipper 3 is better than that of
2. This difference could be explained by the excess hydro-
philicity added by the long tether in 2, preventing
partitioning,63 or the too high entropy cost of the flipper
insertion into the membrane due to the restricted rotations of
the many single bonds in the longer tether.79−81 In any case,
the poor fluorescence of flipper 2 was inadequate for its use as
a chemistry tool to image localized membrane tension changes
in living cells. These results thus identified HaloFlipper 3 as
the best among probes 2−6 for this purpose. The intermediate
tether length of ∼6 nm (Figure S3) of the best HaloFlipper 3
revealed characteristic Goldilocks behavior,75,82 offering the
right balance of hydrophilicity and length needed for cell
penetration and insertion into the MOI after reacting with the
HaloTag.

■ SPECIFIC LABELING OF SUBCELLULAR
MEMBRANES

The best HaloFlipper 3 was used together with the ultraloose
analog 2 for the targeting of fusion proteins p1−p10 in
different subcellular compartments, including also MOIs that
are beyond the reach of nonuniversal empirical tracking
approaches (Figures 3 and 4). HaloTag- and GFP-fused

Figure 3. CLSM images of COS-7 cells expressing HaloTag and GFP on the membrane of (A) peroxisomes (PEX3-GFP-HaloTag, p1, Figure 4),
(B) endolysosomes (LAMP1-HaloTag-GFP, p2), and (C) Golgi apparatus (GTS-HaloTag-GFP, p3) after incubation with 3 (90 nM, 15 min).
Top: GFP; middle: 3; bottom: merged. (D) CLSM images of COS-7 cells expressing HaloTag on the membrane of ER (HaloTag-Sec61B, p6)
after coincubation with 3 (90 nM, 15 min) and ER-Tracker (1 μM, 15 min). Top: ER-Tracker; middle: 3; bottom: merged. (E) CLSM images of
HeLa Kyoto cells expressing HaloTag in the cytoplasm (p10) after incubation with 3 (1 μM, 15 min) followed by incubation with HRO (5 μM, 15
min). Top: HRO; middle: 3; bottom: merged. (F) CLSM image of COS-7 cell expressing ManII-HaloTag fusion protein (Golgi apparatus, p5)
after incubation with 3 (90 nM, 15 min). (G) Same as panel F, using HaloTag-ST as a fusion protein (p4, Golgi apparatus). (H) Fluorescence
intensity of GFP (proportional to HaloTag expression) versus fluorescence intensity of 2 (17 nM, 45 min, light blue) and 3 (25 nM, 45 min,
intense blue) in HeLa cells expressing GTS-HaloTag-GFP (p3, 1 dot = 1 cell) with linear curve fit. (I) Fluorescence intensity of 2 (17 nM, 45 min,
light blue) and 3 (25 nM, 45 min, intense blue) in HeLa cells expressing cP450-HaloTag (p7, 1 dot = 1 cell) with straight lines corresponding to
median values. Scale bars: 10 μm. Experiments were performed in duplicate for panels H and I.

Figure 4. Schematic presentation of protein conjugates with
HaloFlipper 3 used in this study. Flipper chromophores: red
rectangles; HaloTags: teal filled circles; GFPs: green cylinders;
other proteins: black. Protein sizes were roughly estimated from the
number of amino acid residues. p1: PEX3-GFP-HaloTag, p2:
LAMP1-HaloTag-meGFP, p3: GTS-HaloTag-meGFP, p4: ST-Hal-
oTag-HA, p5: ManII-HaloTag, p6: HaloTag-Sec61B, p7: cP450-
(C21)-HaloTag, p8: HsPex3p(1−230)-HaloTag, p9: HaloTag-CLC,
p10: free HaloTag (Table S1).
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membrane proteins in peroxisomes (PEX3, p1, Figure 3A and
Figure S13A)83 endolysosomes (LAMP1, p2, Figure 3B and
Figure S13B),49 and the Golgi apparatus (Golgi targeting
sequence (GTS), p3, Figure 3C and Figures S3 and S13C),49

were examined first. The fusion proteins were expressed by
transient transfection of the cells with the corresponding
plasmids. For all three systems, the colocalization of GFP with
HaloFlippers 2 and 3 was excellent (Figure 3A−C). The
flipper selectivity for the MOI was quantified with PCCs. PCC
= 0.81, 0.88, and 0.94 were obtained for 3 targeting PEX3
(p1), LAMP1 (p2), and GTS (p3), respectively. This high
selectivity obtained from the manual PCC analysis was
supported by the automated image-based large-scale high-
content analysis, which showed, again, good correlations
between the fluorescence intensities of GFPs and flippers
(Figure 3H and Figures S10−S12). The automated high-
content analysis further confirmed that, as with the above
HGM cells, the fluorescence intensity of 3 in the specific
subcellular MOIs with the overexpressed proteins is generally
higher compared with 2 (Figure 3H and Figures S10−S12).
The Golgi apparatus was also targeted using resident proteins,
including mannosidase II (ManII) and sialyltransferase (ST),50

both with the self-labeling HaloTag fused to the lumen side of
the proteins (Figures 3F,G and 4, p4, p5).84,85

Other fusion proteins from different organelles were also
tested, including the minimal membrane anchoring domains of
cytochrome P450 (cP450) and Sec61B,86 both in the
membrane of the ER, fused to the HaloTag on their cytosolic
sides (Figure 3D; Figure 4, p6, p7; Figure S14). Lacking a
fluorescence protein that would report on the expression level
after transfection, we confirmed the selectivity of the
HaloFlippers for the location of the corresponding MOIs
with an ER-selective dye. Once again, the fluorescence
intensity of 3 was higher than that of 2 in both cases (Figure
3I and Figure S12). Extra fusion proteins for peroxisomes87

were examined as well, with equally good results
(HsPex3p(1−230)-HaloTag p8, Figure 4 and Figure S15).
Flipper emission from nontransfected cells was negligible

(Figure S9). This general observation confirmed that the
cellular uptake is reversible and the covalent capture by the
fusion proteins is very efficient. Negligible off-target emission
from nontransfected cells, at reasonable transfection levels, was
important to exclude interference with membrane tension
measurements in the MOI.
These results from different fusion proteins in different

organelles confirmed HaloFlipper 3 as the best, with an
intermediate 16-mer tether length of ∼ 6 nm offering the right
hydrophilicity and length for efficient cell penetration and
insertion into the MOI after reacting with the HaloTag
(Figures 1 and 4 and Figure S3). The consistent trends
supported that this conclusion is general, except for very large
protein complexes where the HaloTag is expressed far from the
MOI. In fact, images of HeLa cells with the clathrin coat
overexpressed with the HaloTag fused to one of the light
chains50,88 did not show any substantial fluorescence signal
after incubation with flipper 3 or 2 (HaloTag-CLC p9, Figure
4 and Figure S3 and S16). In contrast, CLSM images after
treatment with the environment-insensitive HRO control50

exhibited cells with fluorescence located in vesicular domains
distributed in the cytoplasmic matrix, ruling out transfection
efficiency issues (Figure S16). This result confirmed that
HaloFlippers are silent outside the MOI; that is, they do not

produce false positives with regard to the localized
fluorescence imaging of membrane tension.
Further support for this important conclusion was obtained

from HaloTags expressed freely in the cytosol (p10, Figure
4).22 HaloTags colabeled using flipper 3 and HRO controls
produced images with a homogeneous distribution of the
fluorescence from the latter in the cytosol and nucleus. In
contrast, the HaloFlipper emitted only weakly from organelle-
like structures, even at concentrations far above the EC50 (1
μM instead of 90 nM, Figure 3E and Figure S17). Whether this
fluorescence originated from HaloTag complexes with the
hydrophobic flippers anchored in the subcellular membranes
or from unreacted probes was not further important. The
important point was the experimental confirmation that
flippers bound to HaloTags do not emit from the media;
that is, they do not interfere with the localized fluorescence
imaging of membrane tension.

■ IMAGING CHANGES IN PHYSICAL PROPERTIES
AND MEMBRANE TENSION

The compatibility of HaloFlipper 3 to fluorescently image
tension applied to any MOI within living cells was explored
with FLIM. The lifetime of HaloFlipper 3 in the ER, after
incubation with cells transfected with the corresponding
plasmids, was τ ≈ 3.5 ns (p6, p7, Figures 4 and 5A,E and
Figure S18). The probe responded to a decrease in the
membrane tension caused by hyperosmotic stress with a
decrease in the fluorescence lifetime by Δτ ≈ 0.3 ns. These
lifetimes and decreases were similar to changes found with
flippers that target ER with the empirical, nonuniversal
methods of ER trackers.35 This similarity supported the notion
that neither flipper−protein interactions nor the local environ-
ment influences the tension imaging by HaloFlipper 3. In other
words, the tether in 3 is long enough to allow sufficient
diffusion of the flipper in membranes to report an average
membrane tension change without interference from the
protein.
Because of the transfection inefficiency of HsPex3p(1−230)-

HaloTag (p8) in COS-7 cells, peroxisome tension experiments
were performed in HeLa Kyoto cells. The similar lifetime
characteristics of peroxisomal and ER membrane, including
their response to changes in the membrane tension (Figure 5E
and Figure S20), were consistent with the notion that
peroxisomes can form and gain their lipids from the ER
membranes.89,90

The membrane of the Golgi apparatus, richer in cholesterol
and sphingolipids,91−93 revealed a higher order than the ER,
with significant differences depending on the fusion protein.
For instance, the lifetime of flipper 3 tagged to mannosidase II
(p5, τ ≈ 4.0 ns) was higher than the one from sialyltransferase
(p4, τ ≈ 3.7 ns, Figure 5). However, their responses to
membrane tension applied by extracellular hyperosmotic stress
were identical (Figure 5B,E and Figure S19). Like in the ER,
this uniform response supported the notion that flipper probes
report on the average tension changes in the MOI. Differences
in absolute values indicated that flipper probes can also inform
on the nature of the local membrane environment of the fusion
protein. However, it is far from certain to assume that this will
be the case with other constructs and expression levels.
To further elaborate on these conclusions, ManII-HaloTag

(p5)-transfected cells were incubated for 15 h with 1.5 μM
myriocin, a well-known antibiotic that inhibits sphingosine
biosynthesis.94 A control group of cells was treated with
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methanol only as a negative control under otherwise identical
conditions. Both groups were stained with flipper 3, visualized
with FLIM, and subjected to osmotic shock (Figure 6A,B).
Whereas the control group showed an almost identical lifetime
and response to osmotic shock as discussed before (4.00−3.66
vs 4.02−3.68 ns), the sphingolipid depleted cells resulted in a
clearly reduced lifetime (3.84 ns), suggesting that the lipid
order indeed decreased (Figure 6C, Table S4). The response
to osmotic shock remained comparable, indicating the

continuing presence of sufficiently ordered domains for
disassembly in response to the decreasing membrane tension
(Δτ = 0.33 vs 0.34 ns).
These results nicely illustrated how to interpret flipper

lifetimes in general: (i) Absolute lifetimes report on the overall
physical properties of the MOI, increasing with order.5,7 (ii)
Lifetime changes can report on the membrane tension change,
with lifetimes increasing with tension.5,35

For the experiment under discussion, the observed lower
absolute lifetimes upon sphingolipid depletion are consistent
with reduced membrane order (Figure 6A,B). For the
preceding experiment giving different lifetimes for different
fusion proteins in the same organelle, this could imply that the
membrane environments around the two fusion proteins differ,
and flipper probes inform on their order (p4 vs p5 but not p6
vs p7, Figures 4 and 5E). However, the decreases in lifetimes
under osmotic stress were uniform in both cases (Figures 5E
and 6C). Thus membrane tension imaging is operational,
independent of the composition of the MOI. Lifetimes are
independent of transfection efficiency as long as off-target
effects from overtransfection can be excluded; such problems
are, however, general and unrelated to flipper probes.
FLIM images of HaloTags freely expressed in the cytoplasm

were recorded as negative controls. The reaction with the
environment-insensitive HRO control produced homogeneous
fluorescence throughout the cytosol and nucleus, as already
described (Figure 3E). Osmotic stress applied to these cells did
not change the fluorescence lifetimes (Figure 5C,E). In
contrast, cytosolic HaloTags reacted with flipper 3 produced
a very heterogeneous distribution of lifetimes, reflecting the
location in different subcellular membranes of different
composition. The full width at half-maximum (fwhm) of the
lifetime histogram was w ≈ 2.0 ns, more than twice as large as
the fwhm of the lifetime histogram from flippers in ER (w ≈
0.7 ns) or Golgi (w ≈ 0.6 ns, Figure 5D vs Figure 5A,B). This
fwhm broadening obtained with nonlocalized flipper probes
confirmed that the localization of flipper probes in a specific
MOI is ultimately essential for the meaningful and tractable
fluorescence imaging of membrane tension within living cells.

■ CONCLUSIONS
Small-molecule chemistry tools to fluorescently image physical
forces will be needed to tackle mechanobiology. We have
previously introduced flipper probes to image membrane
tension changes in living cells with FLIM. Here we introduce
HaloFlippers to specifically localize fluorescent tension probes
to any MOI. This is achieved by first expressing HaloTag

Figure 5. (A−C) FLIM images of cells expressing (A) cP450-
HaloTag (p7), (B) ManII-HaloTag (p5), and (C) free HaloTag in
cytosol (p10) labeled with 3 ((A,B) 90 nM, 15 min) or HRO ((C) 5
μM, 15 min) under isotonic (top) or hypertonic (middle) conditions
with their corresponding lifetime histograms (bottom: red, isotonic;
black, hypertonic; red dashed line, isotonic signal normalized to values
of hypertonic). (D) FLIM image of cells expressing free HaloTag in
cytosol (p10) labeled with 3 (90 nM, 15 min, top) and its
corresponding lifetime histogram (bottom). Scale bars: 10 μm. (E)
Fluorescence lifetimes of cells expressing ManII-HaloTag (p5), ST-
HaloTag (p4), cP450-HaloTag (p7), HaloTag-Sec61 (p6), and
HsPex3p(1−230)-HaloTag (p8) labeled with 3 (90 nM, 15 min, filled
diamonds) and free HaloTag (p10) labeled with HRO (5 μM, 15
min, empty diamonds) under isotonic (red) or hypertonic (black)
conditions; 1 diamond = 1 measurement, with the solid black line
corresponding to mean values, whiskers corresponding to the
standard deviation, and the solid gray line matching measurements
on the same cell. Statistical significance was determined using the one-
tailed paired Student’s t test: ns: p > 0.05, ****: p < 0.0001.

Figure 6. (A,B) FLIM images of cells expressing ManII-HaloTag (p5)
treated with 1.5 μM myriocin (A) or methanol control (B) labeled
with 3 (90 nM, 15 min). Scale bars: 10 μm. (C) Fluorescence
lifetimes of cells from conditions A (m+) and B (m−) under isotonic
(red) or hypertonic (black) conditions, with the one-tailed unpaired
(m+ vs m−) or paired (+ vs −) Student’s t test for comparing
myriocin-treated cells with the control group for responses to osmotic
shock: **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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fusion proteins on that MOI. These HaloTags then react with
fluorescent force probes equipped with a chloroalkane at the
end of a long enough (but not too long) tether, that is,
HaloFlippers.
With the best HaloFlipper, we demonstrate that the

targeting of MOIs is general in the broadest sense. Important
examples include organelles (e.g., Golgi, peroxisomes) that are
not easily targeted with the nonuniversal, empirical methods
known from the respective trackers (mitochondria, ER,
endolysosomes).
Upon installation, HaloFlippers report on the nature of the

MOI, with lifetimes increasing with membrane order. For
example, the lifetimes in the more ordered Golgi membranes
(up to τ ≈ 4.1 ns) clearly exceed those of the ER (up to τ ≈
3.5 ns). Changing the composition of the MOI, that is,
sphingomyelin depletion in the Golgi, shortens lifetimes, as
expected for decreasing order (τ ≈ 4.02−3.84 ns), whereas the
responsiveness to membrane tension remains intact.
Increasing tension applied to the MOI by osmotic stress is

reported as an increase in lifetime, and decreasing tension is
reported as a decreasing lifetime. The magnitude of the
response to tension does not depend much on the nature of
the MOI. Examples reach from Δτ = 0.37 to 0.27 ns for the
same level of osmotic stress. HaloFlippers localized in MOIs
yield a high resolution, characterized by the fwhm of the
lifetime histogram around w ≈ 0.7 ns. Controls with targetless
flippers contrast with w ≈ 2.0 ns. This important difference
demonstrates that precise probe localization in the MOI is
ultimately unavoidable for significant tension imaging in living
cells.
HaloTagged control dyes without mechanosensitivity do not

change the lifetime in response to tension changes (Δτ =
−0.02 ns for rhodamines). Controls further confirm that
HaloTagged flippers that cannot insert into membranes do not
fluoresce. For instance, loading of a HaloTag expressed in the
cytosol produces bright diffuse fluorescence with rhodamines
but not with flippers. These results demonstrate that
HaloFlippers are ready for use in mechanobiology in the
broadest sense. The response from the community to the
original Flipper-TR operating on the surface of cells suggests
that a chemistry tool to image membrane tension exclusively in
MOIs everywhere within cells will satisfy an important and
urgent need.
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Noemi Jimeńez-Rojo − School of Chemistry and Biochemistry
and National Centre of Competence in Research (NCCR)
Chemical Biology, University of Geneva, Geneva 1211,
Switzerland

Joseph E. Chambers − Cambridge Institute for Medical
Research, University of Cambridge, Cambridge CB2 0XY,
United Kingdom; orcid.org/0000-0003-4675-0053

Stefan J. Marciniak − Cambridge Institute for Medical Research,
University of Cambridge, Cambridge CB2 0XY, United
Kingdom; orcid.org/0000-0001-8472-7183

Howard Riezman − School of Chemistry and Biochemistry and
National Centre of Competence in Research (NCCR) Chemical
Biology, University of Geneva, Geneva 1211, Switzerland;
orcid.org/0000-0003-4680-9422

Naomi Sakai − School of Chemistry and Biochemistry and
National Centre of Competence in Research (NCCR) Chemical
Biology, University of Geneva, Geneva 1211, Switzerland

Complete contact information is available at:
https://pubs.acs.org/10.1021/acscentsci.0c00666

Author Contributions
§K.S. and J.L.-A. contributed equally to this study.
Notes
The authors declare the following competing financial
interest(s): The University of Geneva has licensed Flipper-
TR to Spirochrome for commercialization.

■ ACKNOWLEDGMENTS
We thank D. Moreau and S. Vossio for the help with the high-
content microscopy and analysis, V. Mercier, A. Colom, and C.
Roffay for the help with the FLIM, J. A. Kritzer (Tufts
University), M. Fransen (Leuven University), C. Blackstone
(NIH, Bethesda), D. Toomre (Yale University), M. Hensel
(Osnabrück University), and M. A. Lampson (University of
Pennsylvania) for providing materials (details in Table S1), the
NMR, the MS, and the Bioimaging and ACCESS platforms for
services, and the University of Geneva, the National Centre
Chemical Biology (NCCR) Chemical Biology, the NCCR
Molecular Systems Engineering, and the Swiss NSF for
financial support.

■ REFERENCES
(1) Leiphart, R. J.; Chen, D.; Peredo, A. P.; Loneker, A. E.; Janmey,
P. A. Mechanosensing at Cellular Interfaces. Langmuir 2019, 35,
7509−7519.
(2) Pontes, B.; Monzo, P.; Gauthier, N. C. Membrane Tension: A
Challenging but Universal Physical Parameter in Cell Biology. Semin.
Cell Dev. Biol. 2017, 71, 30−41.
(3) Roca-Cusachs, P.; Conte, V.; Trepat, X. Quantifying Forces in
Cell Biology. Nat. Cell Biol. 2017, 19, 742−751.
(4) Krieg, M.; Flas̈chner, G.; Alsteens, D.; Gaub, B. M.; Roos, W. H.;
Wuite, G. J. L.; Gaub, H. E.; Gerber, C.; Dufren̂e, Y. F.; Müller, D. J.
Atomic Force Microscopy-Based Mechanobiology. Nat. Rev. Phys.
2019, 1, 41−57.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://dx.doi.org/10.1021/acscentsci.0c00666
ACS Cent. Sci. 2020, 6, 1376−1385

1382

https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefan+Matile"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-8537-8349
http://orcid.org/0000-0002-8537-8349
mailto:stefan.matile@unige.ch
mailto:stefan.matile@unige.ch
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Javier+Lo%CC%81pez-Andarias"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:javier.lopez@unige.ch
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karoli%CC%81na+Strakova%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Noemi+Jime%CC%81nez-Rojo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+E.+Chambers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4675-0053
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefan+J.+Marciniak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8472-7183
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Howard+Riezman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4680-9422
http://orcid.org/0000-0003-4680-9422
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Naomi+_target+Sakai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00666?ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00666/suppl_file/oc0c00666_si_001.pdf
https://dx.doi.org/10.1021/acs.langmuir.8b02841
https://dx.doi.org/10.1016/j.semcdb.2017.08.030
https://dx.doi.org/10.1016/j.semcdb.2017.08.030
https://dx.doi.org/10.1038/ncb3564
https://dx.doi.org/10.1038/ncb3564
https://dx.doi.org/10.1038/s42254-018-0001-7
http://pubs.acs.org/journal/acscii?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00666?ref=pdf


(5) Colom, A.; Derivery, E.; Soleimanpour, S.; Tomba, C.; Molin,
M. D.; Sakai, N.; Gonzaĺez-Gaitań, M.; Matile, S.; Roux, A. A
Fluorescent Membrane Tension Probe. Nat. Chem. 2018, 10, 1118−
1125.
(6) Strakova, K.; Poblador-Bahamonde, A. I.; Sakai, N.; Matile, S.
Fluorescent Flipper Probes: Comprehensive Twist Coverage. Chem. -
Eur. J. 2019, 25, 14935−14942.
(7) Dal Molin, M.; Verolet, Q.; Colom, A.; Letrun, R.; Derivery, E.;
Gonzalez-Gaitan, M.; Vauthey, E.; Roux, A.; Sakai, N.; Matile, S.
Fluorescent Flippers for Mechanosensitive Membrane Probes. J. Am.
Chem. Soc. 2015, 137, 568−571.
(8) Soleimanpour, S.; Colom, A.; Derivery, E.; Gonzalez-Gaitan, M.;
Roux, A.; Sakai, N.; Matile, S. Headgroup Engineering in
Mechanosensitive Membrane Probes. Chem. Commun. 2016, 52,
14450−14453.
(9) Riggi, M.; Bourgoint, C.; Macchione, M.; Matile, S.; Loewith, R.;
Roux, A. TORC2 Controls Endocytosis through Plasma Membrane
Tension. J. Cell Biol. 2019, 218, 2265−2276.
(10) Riggi, M.; Niewola-Staszkowska, K.; Chiaruttini, N.; Colom, A.;
Kusmider, B.; Mercier, V.; Soleimanpour, S.; Stahl, M.; Matile, S.;
Roux, A.; Loewith, R. Decrease in Plasma Membrane Tension
Triggers PtdIns(4,5)P2 Phase Separation to Inactivate TORC2. Nat.
Cell Biol. 2018, 20, 1043−1051.
(11) Strakova, K.; Assies, L.; Goujon, A.; Piazzolla, F.; Humeniuk, H.
V.; Matile, S. Dithienothiophenes at Work: Access to Mechanosensi-
tive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond.
Chem. Rev. 2019, 119, 10977−11005.
(12) Cinar, M. E.; Ozturk, T. Thienothiophenes, Dithienothio-
phenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and
Properties. Chem. Rev. 2015, 115, 3036−3140.
(13) Macchione, M.; Goujon, A.; Strakova, K.; Humeniuk, H. V.;
Licari, G.; Tajkhorshid, E.; Sakai, N.; Matile, S. A Chalcogen-Bonding
Cascade Switch for Planarizable Push−Pull Probes. Angew. Chem., Int.
Ed. 2019, 58, 15752−15756.
(14) Bauza,́ A.; Mooibroek, T. J.; Frontera, A. The Bright Future of
Unconventional σ/π-Hole Interactions. ChemPhysChem 2015, 16,
2496−2517.
(15) Begum, S.; Cianci, M.; Durbeej, B.; Falklöf, O.; Had̈ener, A.;
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