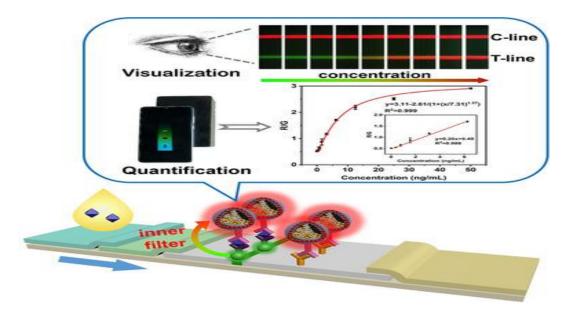
Literature Report

Reporter: yinzhu chen

Date: 2021-10-29

>>> Literature Source

Research Articles



Immunoessays

How to cite: Angew. Chem. Int. Ed. 2021, 60, 13042-13049 International Edition: doi.org/10.1002/anie.202103458 German Edition: doi.org/10.1002/ange.202103458

Ratiometric Fluorescent Lateral Flow Immunoassay for Point-of-Care **Testing of Acute Myocardial Infarction**

Jing Wang⁺, Chenxing Jiang⁺, Jiening Jin, Liang Huang,* Wenbo Yu, Bin Su,* and Jun Hu*

>>> Introduction

胡军

2001年: 毕业于浙江大学材料系

2001-2006年: 硕博连读获得浙江大学材料学博士学位, 入职浙江工业大学

2007-2010年: 浙江工业大学博士后

2008年12月: 评为浙江工业大学第三批青年学术骨干

2009年入选浙江省"151人才"

2012年获得浙江工业大学首届十佳青年教师

2014年-至今: 浙江工业大学化学工程学院教授、博士生导师, 浙江省重点学

科-化学学科负责人

主要研究方向包括: 新型纳米复合磁性材料的制备、表征及表界面研究

苏彬

1995-1999: 吉林大学 学士

1999-2002: 中国科学院长春应用化学研究所 硕士

2002-2006: 瑞士联邦理工学院(洛桑) 博士

2006-2008: 瑞士联邦理工学院(洛桑) 博士后

2009: 瑞士联邦理工学院(洛桑) Permanent Scientist

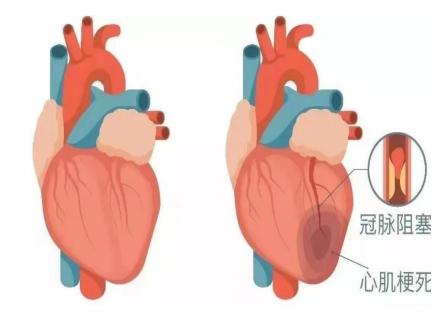
2009-至今: 浙江大学 教授博士生导师

2012年国家优秀青年基金获得者

2012年入选教育部新世纪优秀 人才

研究领域: 油水软界面电分析化学:微纳电化学: 电化学成像分析

11.69 7.45 11.24 46.66 10.83 43.81 □ 心血管病 □ 肿瘤 □ 呼吸疾病 □ 损伤 / 中毒 □ 其他


图1 2018年中国农村居民(A)和城市居民(B)主要疾病死因构成比(%)

《中国心血管健康与疾病报告2020》

Lancet **2017**; 389: 197–210

JACC VOL. 75, NO. 10, 2020

急性心肌梗死--Acute Myocardial Infarction (AMI): 冠状动脉急性、持续性缺血缺氧所引起的心肌坏死

症状表现:急性心肌梗死患者表现为典型的缺血性胸部疼痛和呼吸困难,乏力等症状。

诊断目标: 患者到达急诊科10min内获取12导联ECG, 评估缺血性变化, 并且送检血标本进行生物标志物检测, 从而做出快速诊断分型

主要急性心肌梗死标志物

特点 心肌标志物	组织分布	出现时间	评价				
天门冬氨酸AST	肝脏、骨骼肌、心肌	AMI发生6-12h	特异性差,敏感度差				
乳酸脱氢酶LD	肾脏、肝脏、心脏、骨骼肌	AMI发生8-12h	出现较晚, 半衰期长, 早期诊断无意义				
肌酸激酶CK-MB	心肌组织、脑组织、骨骼肌	AMI发生4-6h	特异性差, 6h前敏感度低, 微小损伤不敏感				
心肌肌钙蛋白cTnl	骨骼肌、心肌	AMI发生4-6h,	虽然心肌特异性高, 但6h内敏感度低				
肌红蛋白MYO	骨骼肌、心肌	AMI发生2h	特异性差				
心型脂肪酸结合蛋白 H-FABP	心肌组织	AIVII友生U.5- 1h内	敏感性高,特异性强, 目前所知最早升高的心肌标志物 _。				

临床心肌标志物检测方法:

酶联免疫吸附实验

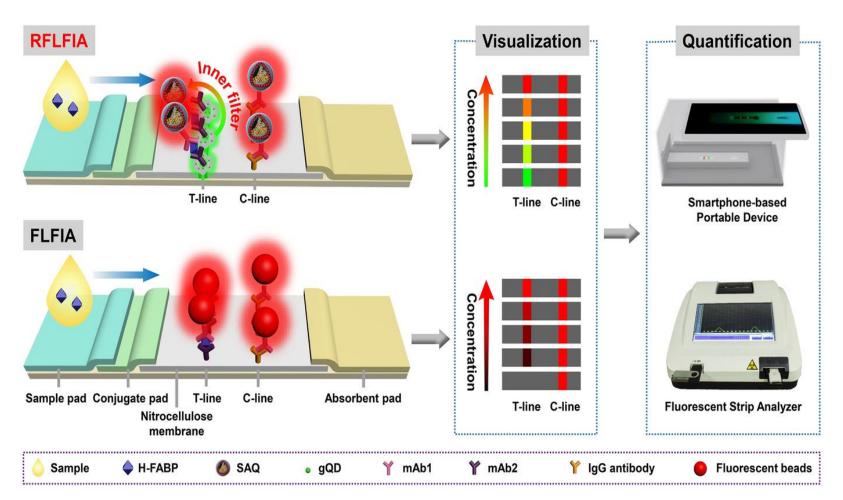
化学发光法

胶体金快速检测

现存检测方法缺陷:

复杂且庞大的检测仪器 较长的检测时间---易错过黄金2h 治疗时间

胶体金及市售荧光快速检测试纸条


- (一)无法定量,灵敏度差,
- (二) 肉眼视觉检查基于颜色强度 (亮度) 的变化很难在低浓度下定 性或半定量地区分目标
 - (三) 单信号响应, 影响因素多
- (四)仍然需要较庞大仪器收集数据

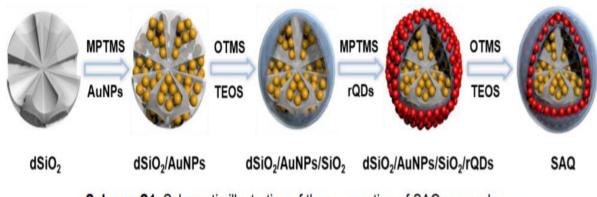
JAMA Network Open. 2020;3(10):e2021677

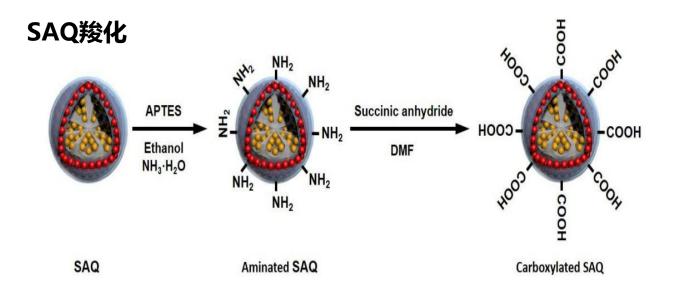
JACC Vol. 60, No. 16, 2012

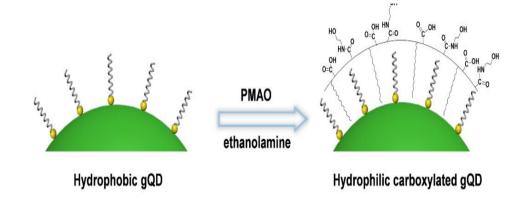
Illustration of RFLFIA and traditional FLFIA

1.本文利用一种比率荧光策略, 设计了具有色调信号读出的高灵 敏度FLFIA——**RLFIA**,减少干扰 因素,提高肉眼读取的灵敏度。 2.RFLFIA试纸条能够通过智能手 机完成H-FABP特定浓度的肉眼 读出或H-FABP的高灵敏度定量, 简单方便。

SAQ: silica-based particle embedded with AuNPs and rQDs

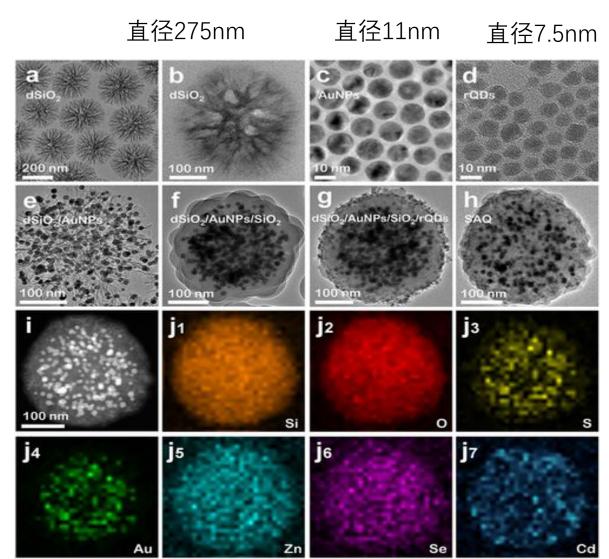

gQDs: green-light emitting CdZnSe/CdS/ZnS QDs


The preparation of SAQ and gQD

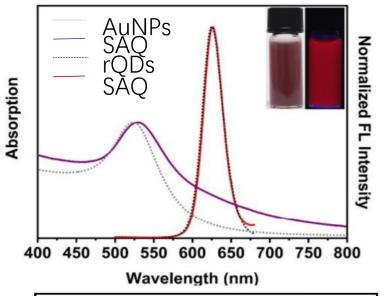

SAQ合成

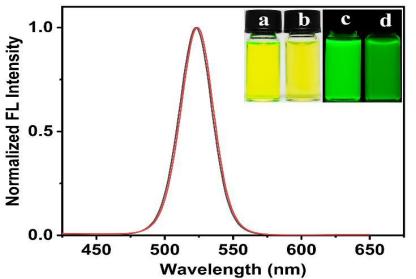
Scheme S1. Schematic illustration of the preparation of SAQ nanospheres.

gQD羧化



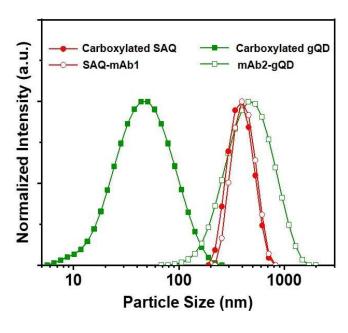
Scheme S3. Schematic illustration of the preparation of carboxylated gQDs.

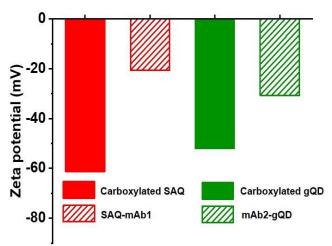

Characterization of SAQ and gQD

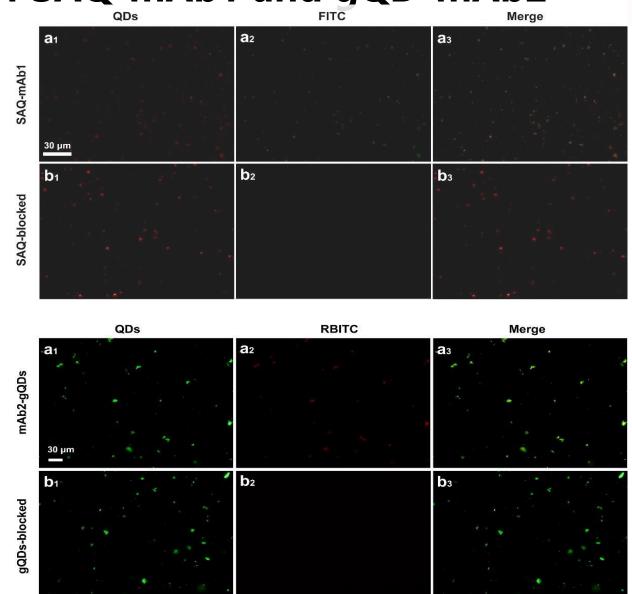


Transmission electron microscopy (TEM) images

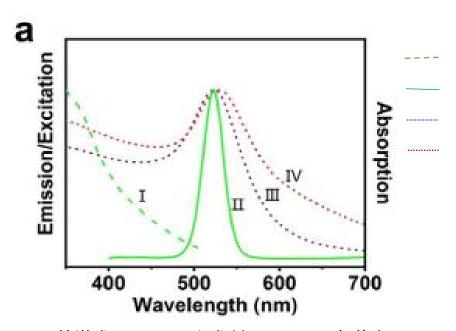
AuNPs和SAQ的紫外吸收光谱 rQDs和SAQ的归一化荧光光谱

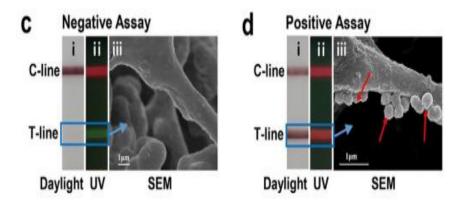


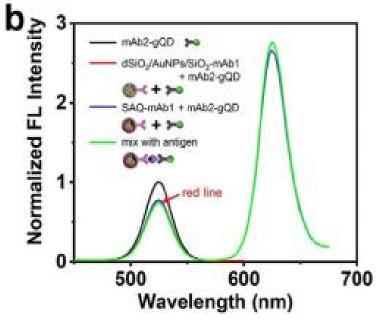




Characterization of SAQ-mAb1 and gQD-mAb2





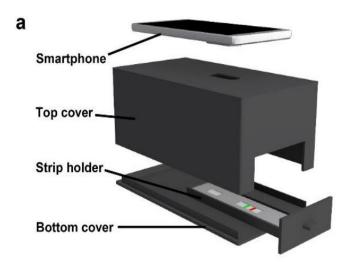

Characterization of two reverse fluorescent

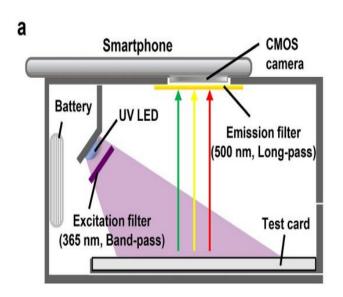
signal changes

gQDs的激发 (curve I) 和发射 (curve II) 光谱 与 AuNPs (curve III)和 SAQ (curve IV)的吸收光谱重叠

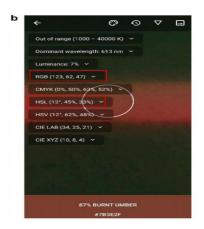
在 dSiO2/AuNPs/SiO2-mAb1 (red curve) 或 SAQ-mAb1 (blue curve) 存在下mAb2-gQD (black curve) 荧光强度明显降低

阳性:T线日光下栗色,紫外下红色


阴性: T线日光下无色, 紫外下绿色


The portable reading device

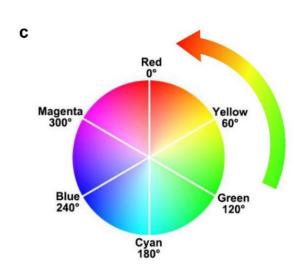
智能手机成像设备示意图



尺寸: 140mm X75mm X55mm

b H-FABP concentration C-line RFLFIA T-line C-line **FLFIA** T-line H-FABP concentration

智能手机捕获图像



Color Picker 成像软件

>> The portable reading device

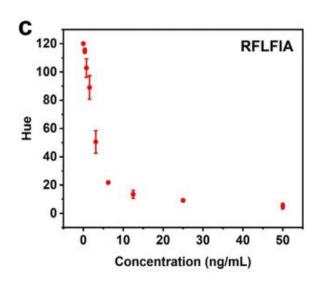
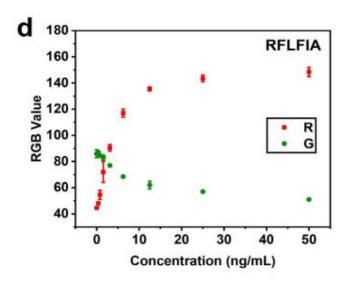
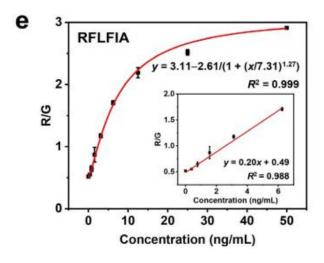
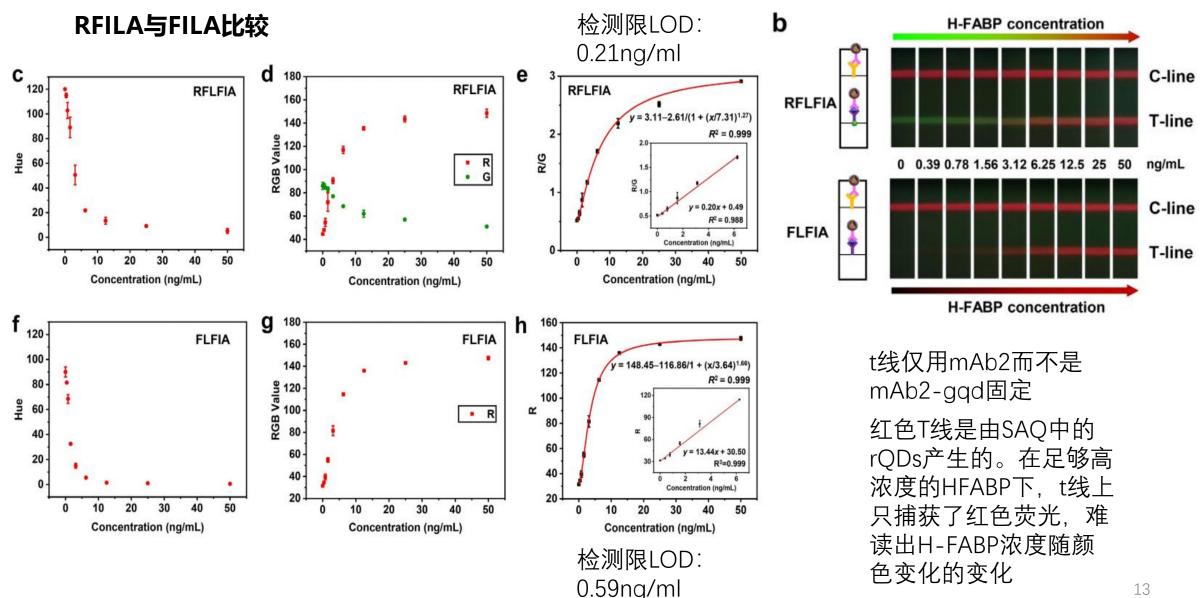
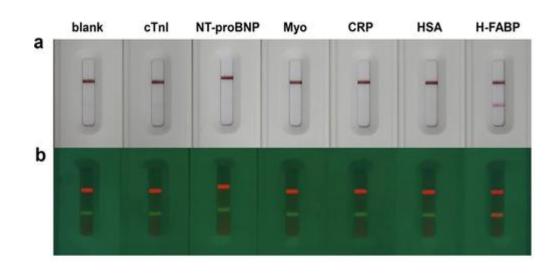




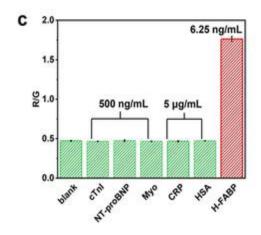
Table S1. A summary of the analytical parameters for H-FABP detection by different methods.

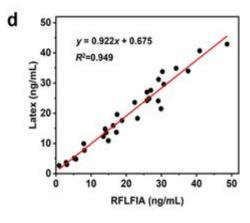
	Method	Detection equipment	Visualization effect	Visual LOD (ng mL-1)	Assay time	(ng mL ⁻¹)	Analytical range (ng mL ⁻¹)	Ref.
	enzyme-linked immunosorbent assay	microplate reader	*	-	45 min	0.2	0.2-6	[S10]
Instrument- based test	chemilumines cence immunoas say	photodiode detector	*8	-	unknown	4	2.4-2400	[S11]
	metal-labeled ampere- metric immunoassay	electrochemical workstation	₩:	-	unknown	0.3 × 10 ⁻⁶	1.3 × 10 ⁻⁶ -130	[S12]
	3D µPAD chemilumine- scence immunoassays	lumines cence analyzer	劉	-	>40 min	0.00032	0.001-1	[S13]
	SERS combined with magnetic reaction	Raman spectrometer	羁	-	unknown	1.4490	0.0-200.0	[S14]
	MIP-Based Multiplex Sensor Platform	MIP functionalized thermocouples	20	2	unknown	4.18	1.5-75	[S15]
POC test	AuNPs-based lateral flow assays	20		6.2	15 min	6.2	2	[S16]
	QD-based lateral flow assays	fluorescence device		unknown	15 min	0.221	0-160	[S17]
	ratiometric fluorescent lateral flow assays	Naked eye or smartphone		1.0	10 min	0.21	0.39-50	This

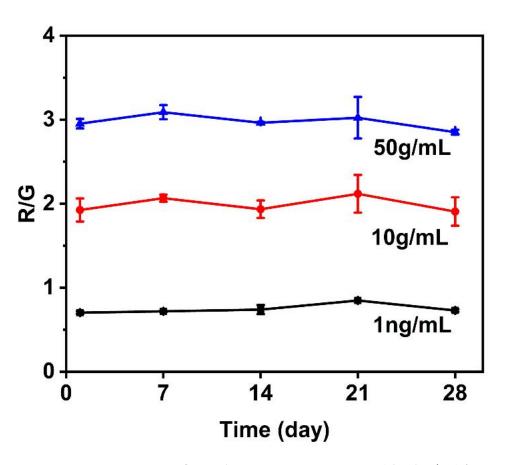


device The portable reading



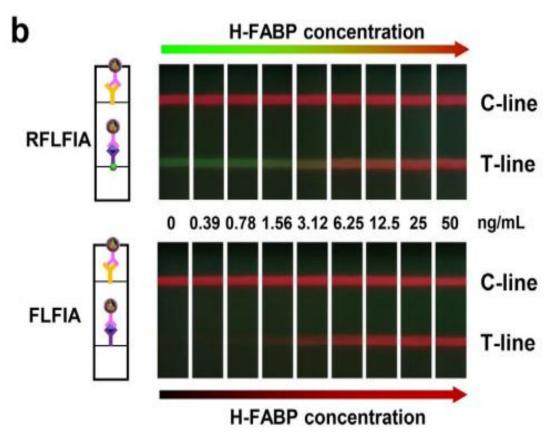



The specificity of RFLFIA for H-FABP

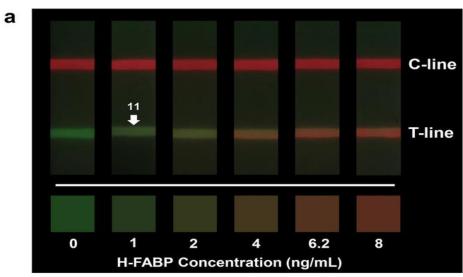


不同阴性样本的R/G值

样品的RFLFIA条带与临床乳 胶凝集试验结果的相关性

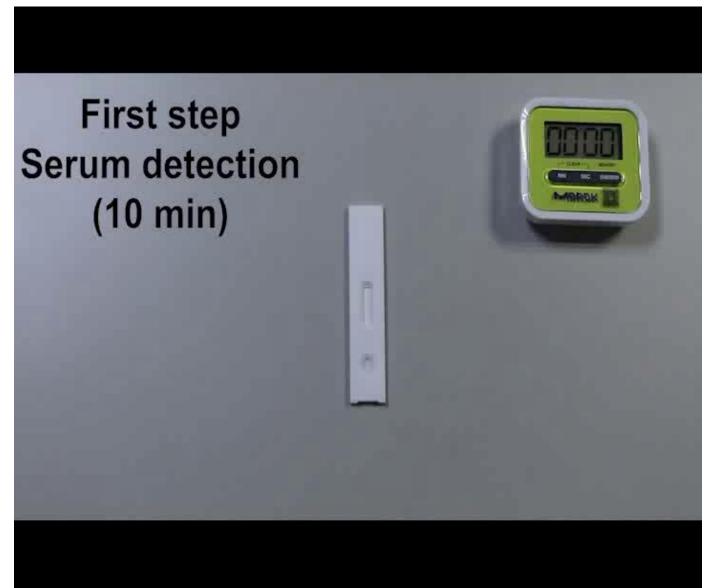


RFLFIA 试纸条检测H-FABP 的稳定性



The semi-quantitative naked-eye readout tests

肉眼可视化LOD值: 1ng/ml


)	Read concentration	Added concentration (ng/mL)						
	(ng/mL)	0	1	2	4	6.2	8	
	0	30	5					
	1	3	28	3				
	2			30				
	4				32			
	6.2				1	26	9	
	8					7	24	
		90.9%	84.8%	90.9%	97.0%	78.8%	72.7%	
	Accuracy		99.	.2%		10	0%	

准确度: 99.2-100%

Summary

该项研究解决的问题:

(1) 实现颜色识别机制:

强度 → 色相,提高肉 眼可视化检测灵敏度

(2) 信号响应:

单信号 → 比率信号, 提高测试的准确度

(3) 终端检测:

大型仪器 → 智能手机 方便快捷。