

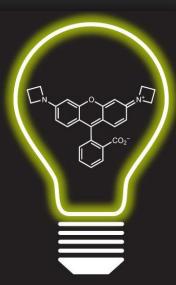
pubs.acs.org/jacsau

A General Method to Improve Fluorophores Using Deuterated Auxochromes

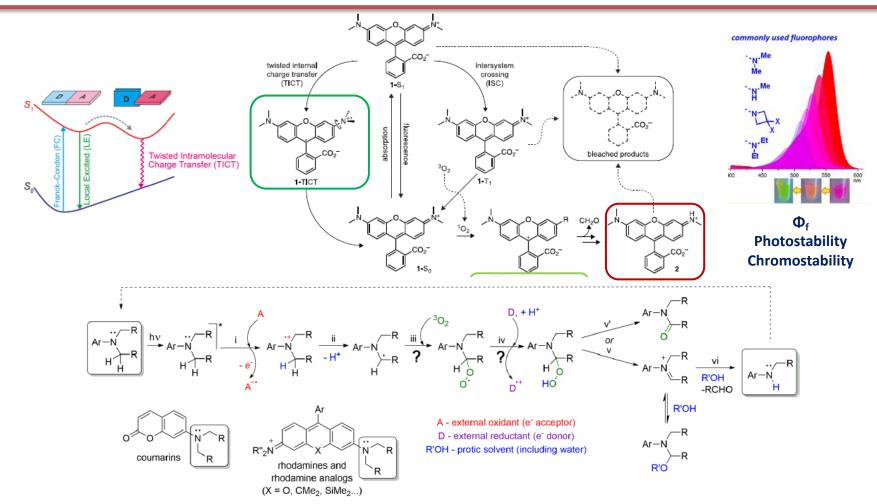
Jonathan B. Grimm, Liangqi Xie, Jason C. Casler, Ronak Patel, Ariana N. Tkachuk, Natalie Falco, Heejun Choi, Jennifer Lippincott-Schwartz, Timothy A. Brown, Benjamin S. Glick, Zhe Liu, and Luke D. Lavis*

Reporter: Jin Li Date: 2021-06-17

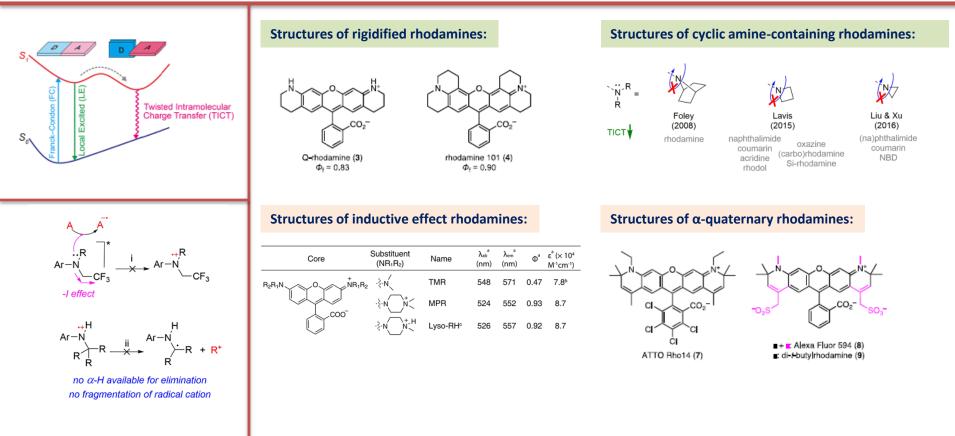
Biography of the author (Janelia Reaearch Campus)


We use modern organic chemistry to transform old dyes into tools for 21st century biology. -Luke Lavis

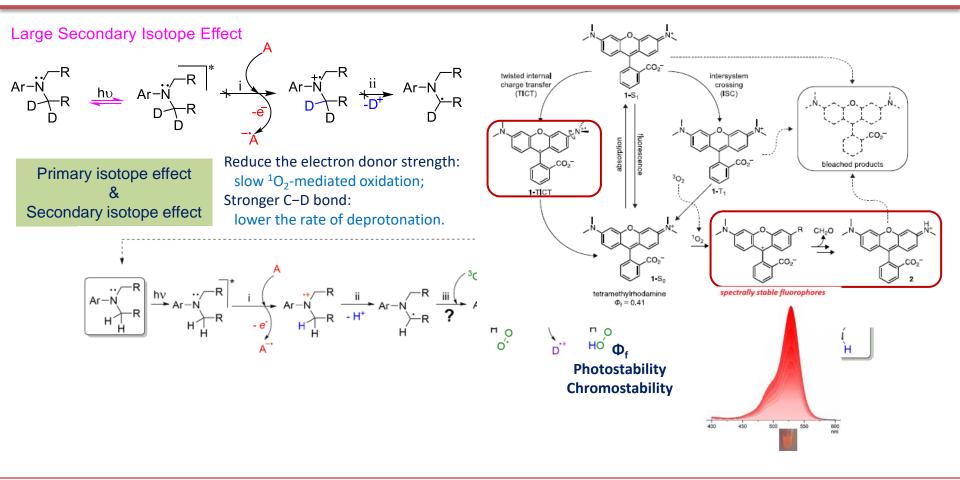
Chemical biology and cell biology:


We work at the interface of chemistry and biology, assembling small molecule fluorescent dyes that facilitate sophisticated biological studies

Current Research


We are interested in designing and building small molecules to measure or manipulate biological systems. Our laboratory synthesizes bright fluorescent labels that enable the imaging of individual molecules in living cells. We also develop fluorogenic probes where the chemical and photophysical properties can be masked by assorted molecular functionalities and then unmasked by a user-designated process involving light, enzymatic activity, or environmental changes. This chemical masking suppresses unwanted fluorescence signals, thereby functioning as a filter for bioimaging and other experiments. Combining these novel compounds with advances in instrumentation, protein engineering, and genetic manipulation allows us to devise sophisticated ways to illuminate complex biological systems.

Photophysics of rhodamines and methods to improve rhodamine properties

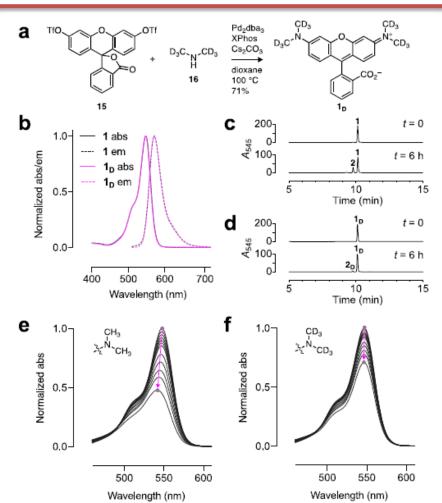
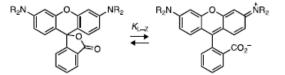


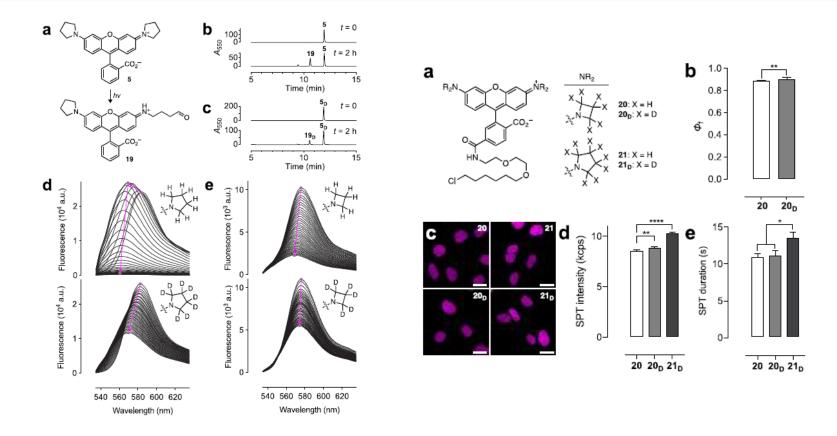
Strategies aimed at suppression of transitioning into the twisted intramolecular charge transfer (TICT) excited state and mitigation the dye photobluing

J. Am. Chem. Soc. 2008, 130, 17652; J. Am. Chem. Soc. 2016, 138, 6960; Nat. Methods, 2015, 12, 244; J. Am. Chem. Soc. 2019, 141, 981; J. Am. Chem. Soc. 2019, 141, 14491

Photophysics of rhodamines and methods to improve rhodamine properties

Deuterated tetramethylrhodamine and Spectral Properties of Rhodamines


Table 1. Spectral Properties of Rhodamines^a

NR ₂	dye	х	$\lambda_{\rm abs}~({\rm nm})$	$\lambda_{ m em}~(m nm)$	ε (M ⁻¹ cm ⁻¹)	K _{L-Z}	$\Phi_{\rm f}$
CX3	1	н	548	572	78,000	3.96	0.41
`∠z ^Ń `CX₃	1 _D	D	547	570	94,500	3.73	0.50
X							
×	6	н	549	571	101,000	3.47	0.88
XNXX	6 _D	D	548	570	96,700	3.03	0.86
x X v							
X+t^x	5	н	553	576	76,000	4.50	0,70
× ^N ××	5 _D	D	554	576	104,000	4.97	0.80
x X X x							
xŶŶŶŶ	17	н	560	586	80,000	2.85	0,08 0.12
XXXX	17 _D	D	559	586	92,600	4.02	
xXX							
xŶŶ	18	н	545	574	84,000	0,14	0.11
XXXX	18 _D	D	544	575	87,800	0.17	0.13

^{*a*}All values are in 10 mM HEPES, pH 7.3 except for K_{L-Z} , which was measured in 1:1 v/v dioxane:H₂O.

Photostability and chromostability of 5, 5D, 6, and 6D and Performance of rhodamine ligands

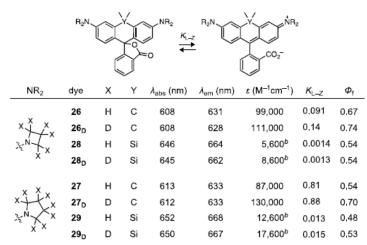
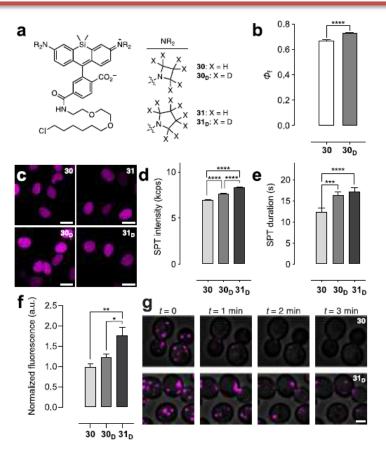
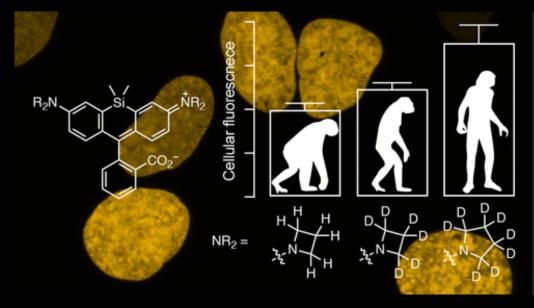

	scaffold	NR ₂	dye	х	$\lambda_{\rm abs}$ (nm)	$\lambda_{\rm em}~({\rm nm})$	ε (M ⁻¹ cm ⁻¹)	$\Phi_{\rm f}$
	R ₂ N, C, O, O	X X X X X X X X X	22 22 _D	H D	381 381	472 472	19,800 19,700	0.46 0.56
I	R ₂ N 0 NR ₂	X X X X X X X X X	23 23 _D	H D	655 653	671 669	85,000 85,000	0.16 0.22
I		$x \xrightarrow{X} x$ $x \xrightarrow{X} x$ $x \xrightarrow{X} x$ $x \xrightarrow{X} x$	24 24 _D	H D	552 550	575 573	95,200 94,200	0,83 0,88
·	C02-	$x \rightarrow x x x x x x x x x x x x x x x x x x$	25 25 _D	H D	561 560	585 584	81,000 96,100	0,30 0,37

Table 2. Spectral Properties of Other Deuterated Dyes^a


^aAll values in 10 mM HEPES, pH 7.3.

Spectral Properties of Red-Shifted Rhodamine Variants and Performance of Si-rhodamine ligands


Table 3. Spectral Properties of Red-Shifted Rhodamine Variants^a

^{*a*}All values in 10 mM HEPES, pH 7.3 except for K_{L-Z} which was measured in 1:1 v/v dioxane:H₂O. ^{*b*} ε > 150 000 M⁻¹cm⁻¹ in EtOH or TFE with 1% v/v TFA.

Conclusion

Chromostability