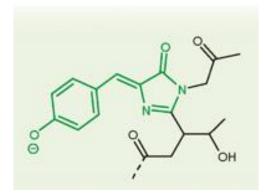

•Fluorescent Protein

- 1.Photochemistry in FPS
- 2.Super resolution with FPS
- 3.Sensors based on FPS---2016.12.14
- 4.Red FPS
- 5.0ther FPS

Reporter: Qinglong Qiao

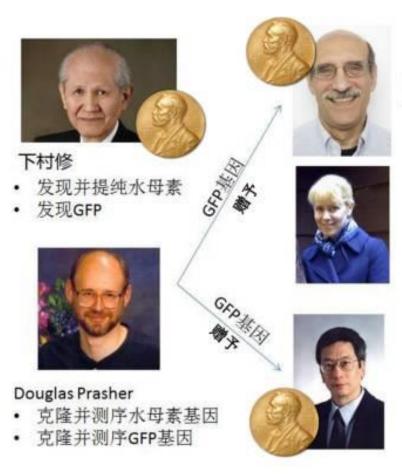
Date: 2020.10.22


https://doi.org/10.1038/s41589-020-0641-7

A general strategy to red-shift green fluorescent protein-based biosensors

Shen Zhang[®] and Hui-wang Ai[®]

EGFP 484 nm; 507 nm



mKate 588 nm; 635 nm

This Work

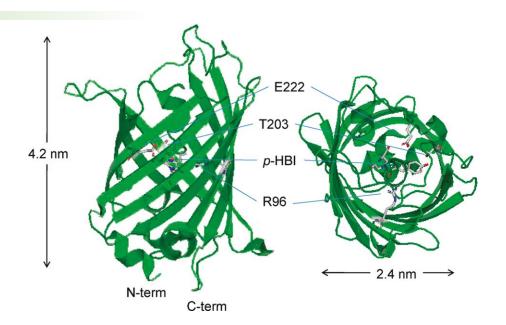
 $\begin{array}{c} \mathbf{a} \\ \\ \mathbf{H_2N} \\ \\ \mathbf{OH} \\ \\ \mathbf{OH} \\ \\ \mathbf{OH} \\ \\ \mathbf{OH} \\ \\ \mathbf{NH_2} \\ \\ \mathbf{OH} \\ \\ \mathbf{Postulated structure of the red chromophore} \\ \end{array}$

Fluorescent proteins and fluorophores

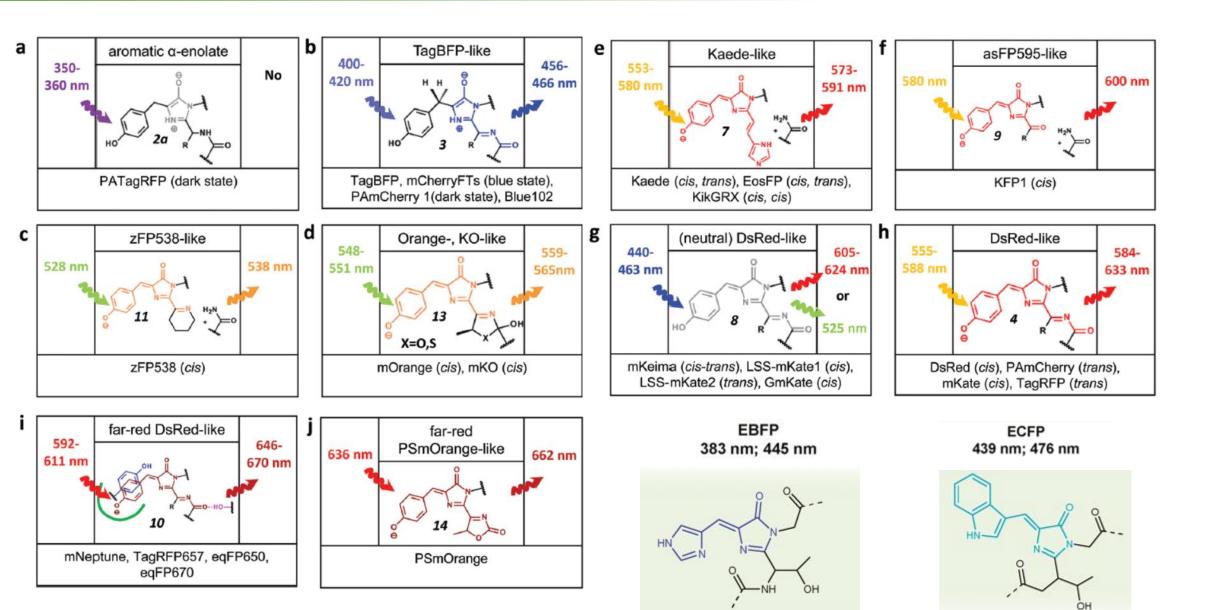
Martin Chalfie

首次用GFP在线虫里监测基因表达和蛋白定位

Ghia Euskirchen

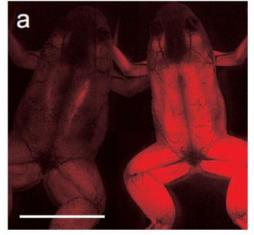

- Chalfie的研究生
- 首次在细菌里表达发 绿荧光的GFP

钱永健


- · 在酵母中表达GFP
- 研制出加强版的GFP和 其它颜色的荧光蛋白

Roger Heim

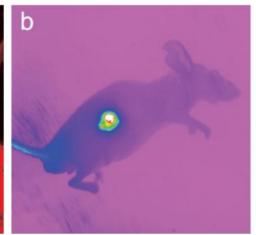
- 钱永健的博士后
- · 做具体的GFP改造工作

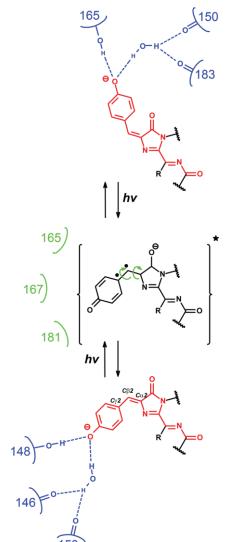

Beyond the rainbow

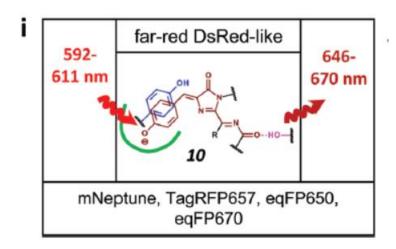
Beyond the rainbow: new fluorescent proteins brighten the infrared scene

- 1. reduced phototoxicity
- 2. decreased autofluorescence
- 3. enhanced tissue penetration

- 1. small dynamic ranges
- 2. mislocalization
- 3. undesired photoconversion

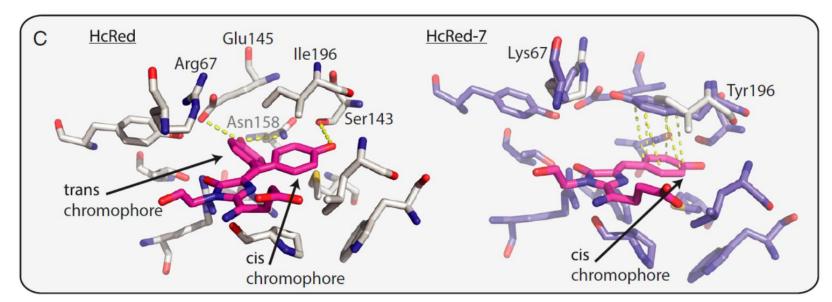




Table 1 | Key characteristics of far-red fluorescent proteins


	mCherry	Katushka	RFP639	E2-Crimson	mNeptune
Excitation peak (nm)	587	588	588	605	599
Emission peak (nm)	610	635	639	646	649
Fluorescence quantum yield	0.22	0.34	0.18	0.12	0.18
Molar extinction coefficient (M ⁻¹ cm ⁻¹) at excitation maximum	72,000	65,000	69,000	58,500	57,500
Brightness ^a (a.u.)	15,840	22,100	12,420	7,080	10,350
Molar extinction coefficient (M ⁻¹ cm ⁻¹) at 635 nm	1,000	1,700	~2,000	12,640	7,900
Quantum yield	0.04	0.07	~0.05	0.03	0.05

DsRed and Derived fluorescent protein

DsRed



Nat. Methods 7, 821–830 (2010) PNAS 115, 11294–11301 (2018)

Table 1 | Key characteristics of far-red fluorescent proteins

	mCherry	Katushka	RFP639	E2-Crimson	mNeptune	eqFP650	eqFP670
Excitation peak (nm)	587	588	588	605	599	592	605
Emission peak (nm)	610	635	639	646	649	650	670
Fluorescence quantum yield	0.22	0.34	0.18	0.12	0.18	0.24	0.06
Molar extinction coefficient (M ⁻¹ cm ⁻¹) at excitation maximum	72,000	65,000	69,000	58,500	57,500	65,000	70,000
Brightness ^a (a.u.)	15,840	22,100	12,420	7,080	10,350	15,600	4,200
Molar extinction coefficient (M ⁻¹ cm ⁻¹) at 635 nm	1,000	1,700	~2,000	12,640	7,900	4,300	15,700
Quantum yield in infrared (700–900 nm)	0.04	0.07	~0.05	0.03	0.05	0.07	0.03
Brightness in infrared ^b (a.u.)	40	119	~100	379	395	301	471
Photostability, widefield ^c (s)	601	ND	ND	19	216	190	1,289
Photostability, confocal ^c (s)	48	77	ND	14	29	67	>700
pKa	4.5	5.5	ND	ND	5.8	5.7	4.5
Reference	9	2	10	8	6	This work	This work

Dipyrromethenes in our lab

A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein

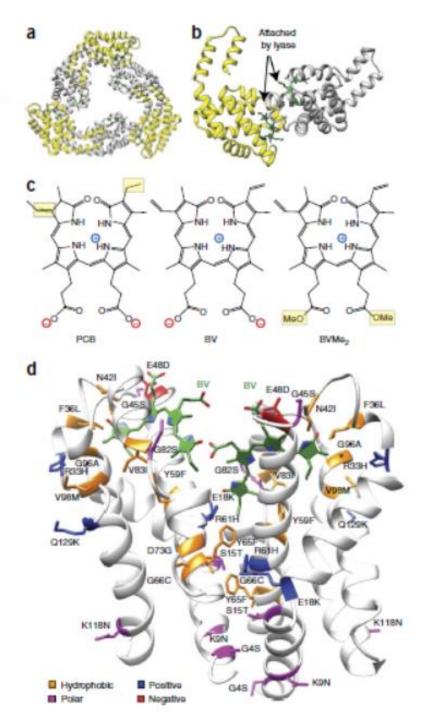
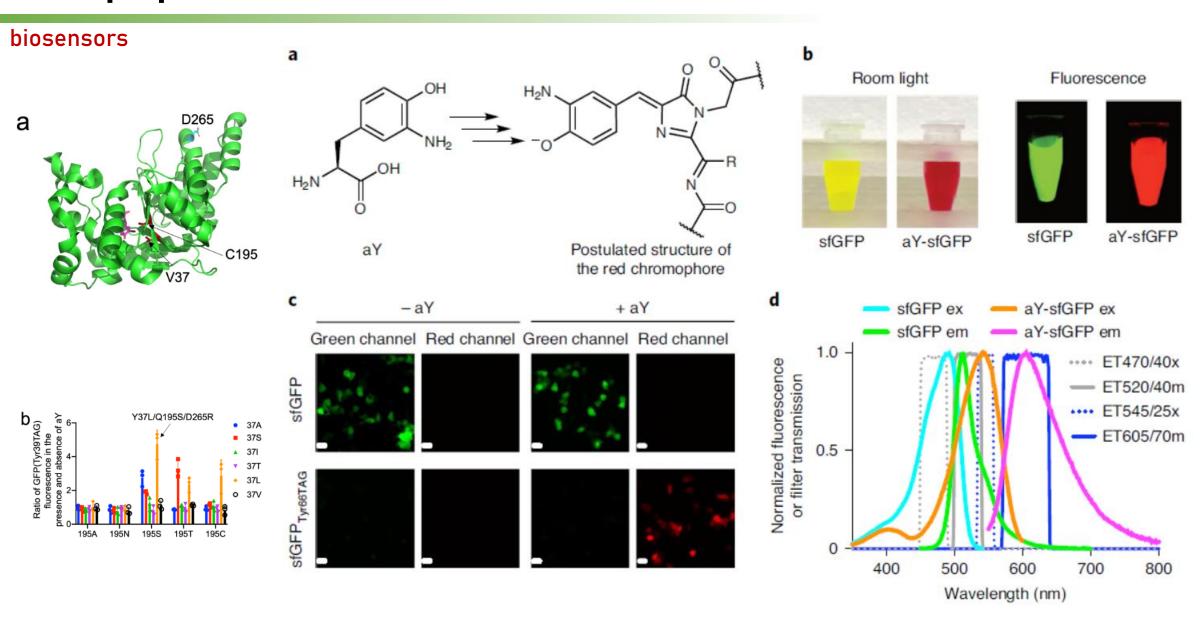

Erik A Rodriguez^{1,7}, Geraldine N Tran^{2,7}, Larry A Gross³, Jessica L Crisp¹, Xiaokun Shu^{4,5}, John Y Lin⁶ & Roger Y Tsien^{1,3}

Table 1 | Biophysical properties of FPs and Cy5


Fluorescent molecule	Excitation maximum (nm)		Extinction coefficient (M ⁻¹ cm ⁻¹ / chromophore)		In vitro photostability t _{50%} (s) ^a	Mammalian cell photostability $t_{50\%}$ (s) ^a	Stoichiometry		Protein stability t _{50%} (h) ^b	Molecular brightness relative to eGFP (%)
eGFP	488 ^c	507 ^c	56,000 ^c	60 ^c	110 ^c	560	Monomer	25°	21	100
mCherry	587 ^c	610 ^c	72,000 ^c	22 ^c	96 ^c	89	Monomer	15 ^c		47
mCardinal	604 ^d	659 ^d	87,000 ^d	19 ^d	730 ^d		Monomer	27 ^d		49
smURFP + BV	642	670	180,000	18	300	570	Dimer	39	33	96
smURFP + BVMe ₂	646	672	65,000	12		340	Dimer		35	23
TDsmURFP + BV	642	670	170,000	18	190		Tandem dimer			91
iRFP670	643e	670e	114,000e	11 ^e		290e	Dimer			37
Cy5	649	670	250,000	25	22		NA		NA	186
IFP1.4	684 ^f	708 ^f	92,000 ^f	7f	8.4 ^f	70°, 50°	Weak dimer	1149	4.49	19
IFP2.0	690 ^h	711 ^h	86,000 ^h	8h			Weak dimer			20
iRFP713	690 ^g	713 ^g	98,000 ^g	6.3 ^e , 5.9 ^g		960°, 450°	Dimer	168 ^g	~4.49	18

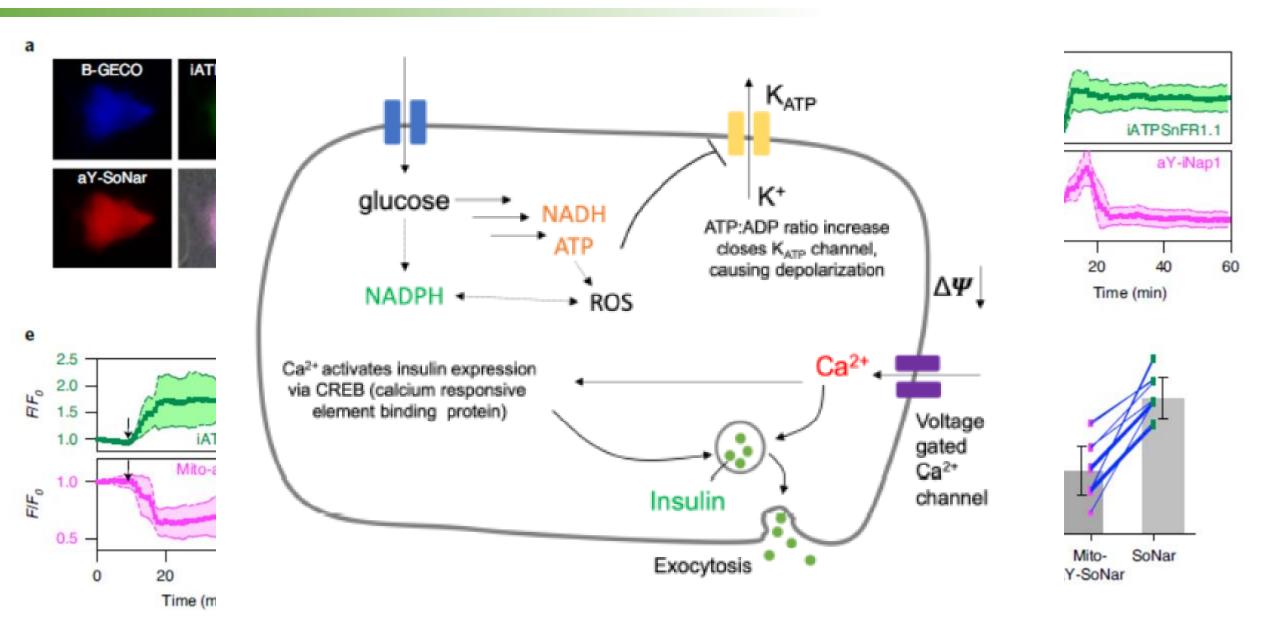
Photostability, time to bleach 50% from an initial emission rate of 1,000 photons per s. NA, not applicable. aDetermined as described in ref. 3. bDetermined as described in Online Methods. aData from ref. 3. dData from ref. 29. aData from ref. 15. aData from ref. 16. bData from ref. 18.

Nat. Methods 13, 763–769 (2016)

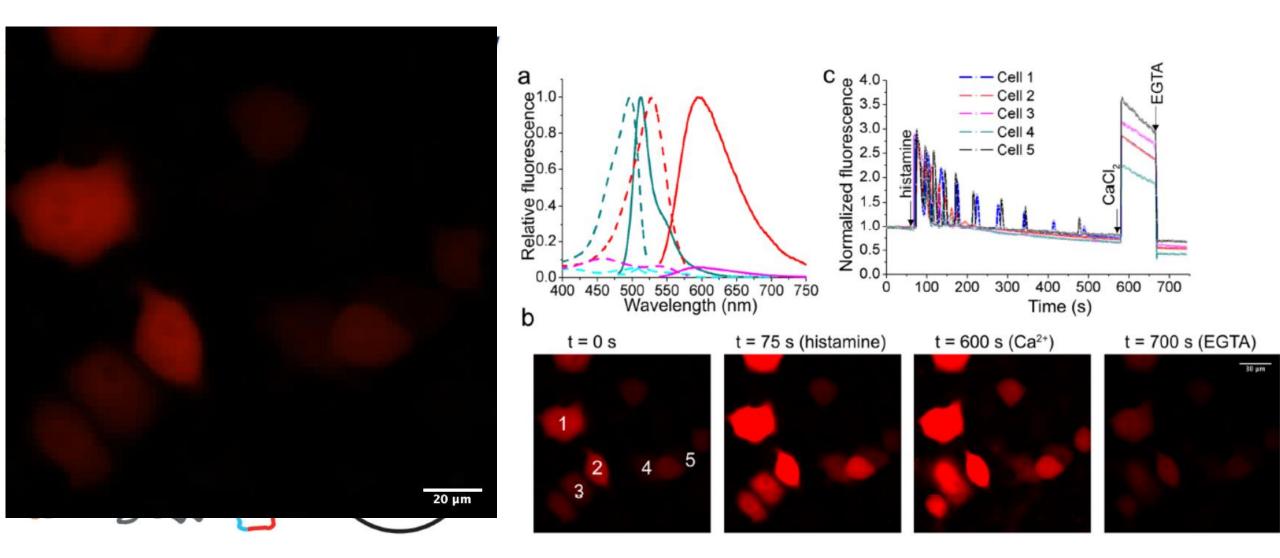
This paper: A general strategy to red-shift green fluorescent protein-based

Improved properties

Table 1	Photophysica	properties of	the selected FPs
---------	--------------	---------------	------------------

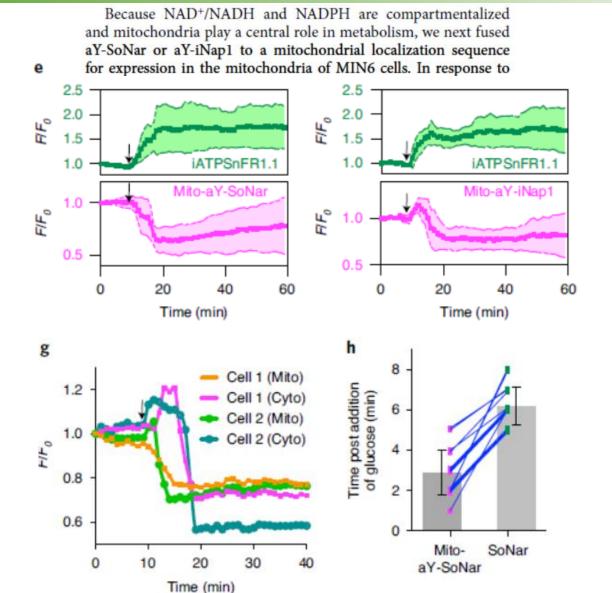

	Chromophore-forming	Normal proteins				Proteins with aY-derived chromophores				Brightness
	residues	$\lambda_{\rm ex}^{a}$ (nm)	λ _{em} ^b (nm)	ε (mM ⁻¹ cm ⁻¹) ^c	\boldsymbol{arphi}^{d}	$\lambda_{\rm ex}^{\rm a}$ (nm)	λ _{em} ^b (nm)	ε (mM ⁻¹ cm ⁻¹) ^c	$oldsymbol{arphi}^{ extsf{d}}$	ratios
sfGFP	TYG	485	510	85.6	0.70	541	605	125.1	0.43	89.8%
cpsGFPf	TYG	488	510	73.1	0.66	527	615	88.5	0.40	73.4%
mTFP1	AYG	462	492	65.6	0.81	514	581	85.5	0.50	80.5%
cpYFP ^g	GYG	503	515	76.3	0.58	569	609	82.6	0.38	70.9%
Citrine	GYG	516	529	75.3	0.75	565	624	95.0	0.45	75.7%

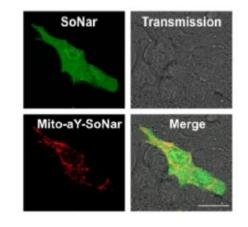
^aWavelength of the excitation peak. ^bWavelength of the emission peak. ^cExtinction coefficient. ^dQuantum yield. ^eMolecular brightness (defined as $\varepsilon \times \varphi$) of an aY-modified protein presented as the percentage of the molecular brightness of the corresponding normal protein. ^tCircularly permuted sfGFP variant previously used to derive the hydrogen sulfide sensor, hsGFP³³. ⁸Circularly permuted EYFP variant previously used to derive the hydrogen sulfide sensor, cpGFP-pAzF²³.

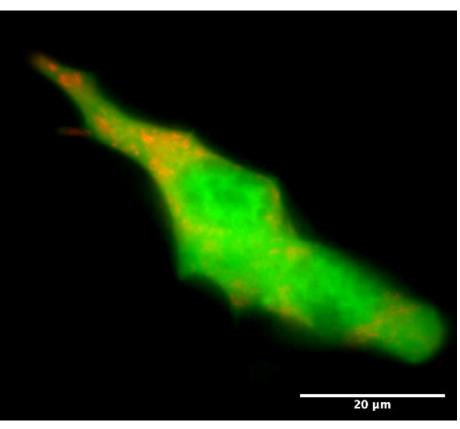

Sensors

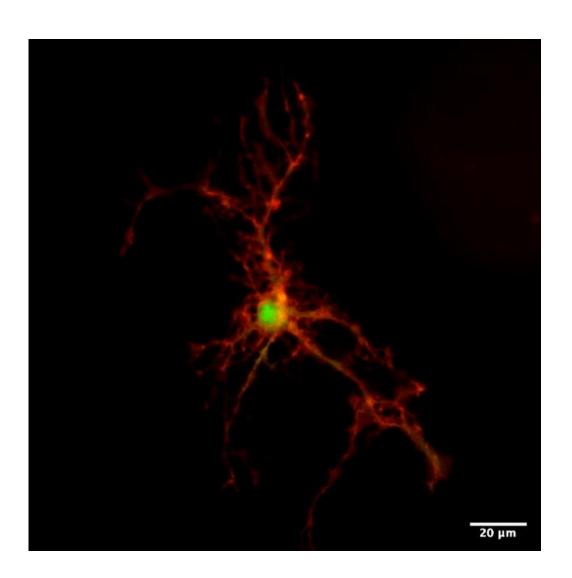
Biosensor	Analytical target	$\lambda_{\rm ex}^{\rm a}$ (nm)	$\lambda_{\rm em}^{\ b}$ (nm)	Dynamic Range ^c (%)	ε ^d (n	nM ⁻¹ cm ⁻¹)	$oldsymbol{arphi}^{e}$	
					_	+	_	+
G-GECO1 (ref. ³⁴)	Ca ²⁺	497	512	1,983	4.7	68.1	0.26	0.38
aY-G-GECO1	Ca ²⁺	528	594	1,566	7.7	79.9	0.14	0.22
ZnGreen1 (ref. 35)	Zn ²⁺	474	500	2,531	24.8	1.3	0.48	0.35
aY-ZnGreen1	Zn ²⁺	520	585	915	34.7	4.8	0.28	0.20
iGluSnFR ³⁶	glutamate	488	510	257	9.6	32.6	0.58	0.60
aY-iGluSnFR	glutamate	528	600	270	12.2	42.7	0.46	0.49
iGABASnFR ³⁷	GABA	502	513	143	NDf	ND^f	ND^f	ND^f
aY-GABASnFR	GABA	541	602	92	NDf	ND^f	ND^f	ND^f
dLight1.2 (ref. ³⁸)	dopamine	496	513	194	ND^f	ND^f	ND^f	ND^f
aY-dLight1.2	dopamine	545	603	117	NDf	ND^f	ND^f	ND^f
SoNar ³⁹	NAD+/NADH	497	512	257 [2,532]8	7.6	23.0	0.44	0.51
aY-SoNar	NAD+/NADH	544	604	426 [2,656] ^g	6.5	28.6	0.29	0.35
iNap1 (ref. ⁴⁰)	NADPH	497	513	82 [273] ^g	22.6	13.1	0.50	0.43
aY-iNap1	NADPH	545	604	614 [11,735] ^g	27.6	4.4	0.41	0.36
PercevalHR ⁴¹	ATP	498	513	155 [364] ^g	14.6	35.6	0.28	0.28
aY-PercevalHR	ATP	545	604	117 [650]8	18.4	40.5	0.21	0.21
iATPSnFR1.1 (ref. ⁴²)	ATP	493	513	106	22.6	43.9	0.36	0.37
aY-iATPSnFR1.1	ATP	541	608	75	29.1	50.9	0.28	0.28

Imaging of metabolic dynamics in pancreatic \(\beta\)-cells




Ca²⁺ Indicators




Science 333, 1888-1891 (2011).

dual-color images of MIN6 cells co-expressing SoNar and mitochondrial aY-SoNar

3Q3Q3Q3Q