

pubs.acs.org/JACS

Article

Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems

Irene Lim, Antoine Vian, Heidi L. van de Wouw, Rachael A. Day, Carlos Gomez, Yucen Liu, Arnold L. Rheingold, Otger Campàs,* and Ellen M. Sletten*

Liu Wenjuan 2020.09.17

Ellen M. Sletten

Assistant Professor

John McTague Career Development Chair Department of Chemistry and Biochemistry University of California, Los Angeles

- BS in Chemistry, 2006, Stonehill College, synthesis of alkaloid glycosidase inhibitors
- PhD in Chemistry, 2011, University of California, Berkeley, optimization and development of bioorthogonal chemistries and their subsequent applications in labeling living systems
- NIH Postdoctoral Fellow, 2011, Massachusetts Institute of Technology, with soft fluorous materials for use in fluorescent sensors
- Assistant Professor, 2015, Department of Chemistry and Biochemistry at UCLA

Research Interests

Fluorinated materials in diagnostic and therapeutic technologies development: organic synthesis, fluorous chemistry, chemical biology, nanoscience, supramolecular chemistry, polymer synthesis, photophysics and pharmacology.

FLUOROUS NANOTHERAPEUTICS

SHORTWAVE INFRARED DIAGNOSTICS

Optical imaging is a safe, cost-effective imaging modality, which can be readily multiplexed or engineered to have a turn-on response. Despite these advantages, optical imaging is not readily employed in the clinic due to the poor penetration of light through tissue and high background signal from endogenous chromophores. The shortwave infrared region of the electromagnetic spectrum has emerged as an optimal region for optical imaging due to the decreased scattering of light by tissue and minimal autofluorescence of endogenous biomolecules in this region. The potential of this region has been showcased using carbon nanotubes and quantum dots. Our group is developing non-toxic, small molecule fluorophores for this region.

A. The orthogonality of the fluorous phase

- ✓ microarray assembly
- ✓ antibiofouling coatings
- \checkmark oxygen delivery
- ✓ ultrasound and magnetic resonance imaging diagnostics
- ✓ in vivo force measurements

FIGURE 1. A schematic representation of a multifunctional liquid perfluorocarbon nanoemulsion. The liquid perfluorocarbon core is surrounded by a lipid monolayer which can be functionalized with targeting ligands and other payload. Additionally, drugs can be dissolved in the lipid layer or carried in the particle interior.

.9F

200 nm

peptidomimetic

Lipid Monolayer

Liquid

Perfluorocarbon Core

> Payload: gadolinium, drug

A. Comparing hydrogen and fluorine nuclei

B. Comparing carbon bound to hydrogen vs. fluorine

C. Comparing hydrocarbons and perfluorocarbons

Figure 4. Protein-observed ¹⁹F NMR (PrOF NMR). This method uses the incorporation of fluorinated amino acids to monitor protein conformation changes in the presence of small-molecule fragments for drug discovery. Proteins with trifluoromethylated tryptophan residues have been used in these types of studies.^[72]

FIGURE 1. A schematic representation of a multifunctional liquid perfluorocarbon nanoemulsion. The liquid perfluorocarbon core is surrounded by a lipid monolayer which can be functionalized with targeting ligands and other payload. Additionally, drugs can be dissolved in the lipid layer or carried in the particle interior.

FIGURE 2. (a) ¹⁹F image (4.7 T) of a single slice through a clot in vitro treated with fibrin-targeted crown ether emulsion. High signal is observed at the clot surface due to bound slice showing the anatomy of the clot with significant background ¹H signal. (c) False color overlay of ¹⁹F signal onto ¹H image clearly localizing ¹⁹F signal to clot surface. (Reprinted with permission from Morawski et al.34)

(C) (d)

(b)

(d)

FIGURE 6. "Lipid streaming" into the plasma membrane. A high power image of a cell surface (see inset) shows a bound rhodamine-labeled nanoparticle (red) with adjacent lipid mixing into the plasma membrane of a cell transiently expressing a green cytoplasmic marker. The cellular features that can be observed are the nucleus (dark circular region), cell cytoplasm (green), and plasma membrane (directly adjacent to cell cytoplasm, only small portion is labeled with red lipid from nanoparticle). (Reprinted with permission from Crowder et al.9)

fluorinated nanoparticles. (b) ¹H image (4.7 T) of the same FIGURE 5. Localization of labeled cells after in situ injection. (a) To determine the utility for cell tracking stem/progenitor cells labeled with either PFOB (green) or CE (red), nanoparticles were locally injected into mouse thigh skeletal muscle. (b-d) At 11.7 T, spectral discrimination permits imaging the fluorine signal attributable to ~1 × 106 PFOB-loaded (b) or CE-loaded cells (c) individually, which when overlaid onto a conventional ¹H image of the site (d) reveals PFOB and CE labeled cells localized to the left and right leg, respectively (dashed line indicates 3 × 3 cm² field of view for ¹⁹F images). (e, f) Similarly, at 1.5 T, ¹⁹F image of -4×106 CE-loaded cells (e) locates to the mouse thigh in a ¹H image of the mouse cross section (f). The absence of background signal in ¹⁹F images (b, c, e) enables unambiguous localization of perfluorocarbon-containing cells at both 11.7 T and 1.5 T. (Reprinted with permission from Partlow et al.40)

(f)

A. The orthogonality of the fluorous phase

B. Previous work on fluorous fluorophores, "fluorofluorophores"

A. The orthogonality of the fluorous phase

B. Previous work on fluorous fluorophores, "fluorofluorophores"

✓ The wt% F is minimally altered to implement a 100 nm shift

✓ The tags surround the chromophore when placed in fluorous

solvent to maximize fluorous solubility

✓ Multichannel experiments

A General Approach to Biocompatible Branched Fluorous Tags for Increased Solubility in Perfluorocarbon Solvents

A. $F_{17}C_8$ $F_{17}C_8$ $F_{17}C_8$ C_8F_{17} C_6F_{17} C_6F_{17} C_7 C_7 COOMe3, Fluorous Rhodamine

▶ 全氟甲基环己烷

0 F	р.	_						
-C ₈ F ₁₇		log_(PFMC)	Solubilities i	n acetone	Solubilities in PFMC			
		Toluene)	Abs (mM)	Relative	Abs (mM)	Relative		
C ₈ F ₁₇	1a	1.82	0.91	10.7	0.12	11		
-	1b	0.157	0.11	1.3	0.21	8		
	1c	2.35	0.09	1	0.04	3		
	3	1.42	0.15	1.7	0.01	1		

Visible UV

Impact of Fluorous Tags on Photophysical Properties

	D.	λ _{max,abs} (r	m)		$\lambda_{max,em}$ (nm)		ε (x 10 ³ M ⁻¹ cm ⁻¹)			Φ_{F}		
$(\mathcal{H}_{\mathbf{R}_{1}} \mathbf{R}_{1} \mathbf$	Solvents	1a 1b	1c	1a	1b	1c	1a	1b	1c	1a	1b	1c
+ N () N	EtOH	570 656	758	588	682	790	38.3	228	180	0.115	0.291	0.16
$Cl^{-}\dot{R}_{2}$ n \dot{R}_{2}	EtOH	λ _{max,abs} (nm)		λ _{max,em} (nm)		$\epsilon (x \ 10^5 \ M^{-1} cm^{-1})$		$\Phi_{ m F}$				
$R_1 = CH_2CH_2C_6F_{13}$ $R_1 = R_2 = Me$	2a	540		563 nm		$0.60 \ge 10^5 \pm 0.01$			$2.16\% \pm 0.07$		0.07	
$R_2 = CH_2CH_2CH_2C_8F_{17}$ 2a, HIDI, n = 1; 1a F Cv3 n = 1; 2b HIDCI n = 2;	2 b	641		664 nm		$1.19 \ge 10^5 \pm 0.02$			$27.9\% \pm 0.3$		0.3	
1b , F_{86} Cy5 , n = 2; 2c , HITCI , n = 3;	2c	74	741 768 nm		n	$1.73 \ge 10^5 \pm 0.02$			$15.2\% \pm 0.8$		0.8	
10 E C v 7 n = 2	D	λ _{max,abs} (nm)		λ _{max,em} (nm)			ε (x 10 ³ M ⁻¹ cm ⁻¹)			Φ_{F}		
IC, F ₈₆ Cy7, II – 3,	D.	۸ _{max,abs}	nm)		۸ _{max,em} (nr	1)		5 (X 10- W -C	m*)		Ψ_{F}	
ις, Γ ₈₆ σγ , π = 3,	D. Solvents	1a 1b	nm) 1c	1a	۸ _{max,em} (nr 1b	1c	1a	1b	m [∼]) 1c	1a	Ψ _F 1b	1c
$F_{13}C_6$ C_6F_{13}	Solvents acetone	1a 1b 571 655	nm) 1c 762	1 a 591	λ _{max,em} (nr 1b 677	10 1c 792	1 a 105	<u>1b</u> 182	1c 199	1a 0.109	φ _F 1b 0.573	1c 0.20
$F_{13}C_6$ C_6F_{13} $F_{13}C_6$ C_6F_{13}	Solvents acetone	$\begin{array}{c c} & \lambda_{\max,abs} \\ \hline 1a & 1b \\ \hline 571 & 655 \\ \hline \lambda_{\max,abs} \end{array}$	nm) 1c 762 (nm)	1a 591	^A max,em (nr 1b 677 nax,em (n	10 1c 792 m)	1a 105 ε (Χ	10 ⁵ M ⁻	<u>1c</u> 199 1 cm ⁻¹)	1a 0.109		1c 0.20
$F_{13}C_6$ $F_{13}C_6$ C_6F_{13} C_6F_{13}	Solvents acetone 2a	$\begin{array}{c c} & \lambda_{\max,abs} \\ \hline 1a & 1b \\ \hline 571 & 655 \\ \hline \lambda_{\max,abs} \\ \hline 54 \end{array}$	nm) <u>1c</u> 762 (nm) 5	1a 591 λ	<u>Amax,em (Nr</u> 1b 677 <u>nax,em (N</u> 563	<u>1c</u> 792 m)	1a 105 ε (x 0	$\frac{10^{5} \text{ M}^{-1}}{182}$ 10^{5} M^{-1} 53 ± 0	^{1c} 199 1 cm ⁻¹) .01	1a 0.109		1c 0.20
$F_{13}C_6$ $F_{13}C_6$ $F_{13}C_6$ C_6F_{13} C_6F_{13} C_6F_{13}	Solvents acetone 2a 2b	$\begin{array}{c c} & \lambda_{\text{max,abs}} \\ \hline 1a & 1b \\ \hline 571 & 659 \\ \hline \lambda_{\text{max,abs}} \\ \hline 54 \\ \hline 63 \end{array}$	nm) <u>1c</u> 762 (nm) 5 9	1a 591 λ	<u>Amax,em</u> (Nr 1b 677 <u>nax,em</u> (N 563 663	<u>1c</u> 792 m)	1a 105 ε (x 0 1	$\frac{10^{5} \text{ M}^{-1}}{182}$ $\frac{10^{5} \text{ M}^{-1}}{1.53 \pm 0}$ $.20 \pm 0$	1c 199 ¹ cm ⁻¹) .01 .02	1a 0.109		1c 0.20 0.01 1

F17C8 C8F17

Cl-

D.	λ _{max,abs} (nm)			λ _{max,em} (nm)			3	(x 10 ³ M ⁻¹ cm	1 ⁻¹)	Φ_{F}			
Solvents	1a	1b	1c	1a	1b	1c	1a	1b	1c	1a	1b	1c	
EtOH	570	656	758	588	682	790	38.3	228	180	0.115	0.291	0.16	
acetone	571	655	762	591	677	792	105	182	199	0.109	0.573	0.20	
DCM	а	672	773	а	691	800	а	81	254	а	0.59	0.22	
PFOB	572	668	781	584	694	800	73	48	81	0.17	0.37	0.083	
PFMC	571	659	845	581	688	b	27 70	0087	С	0.044	-0.24	b	
PFD	572	658	848	582	690	b	30 /0	27	С	0.024	0.37	b	
HFE-7300	570	659	772	584	685	787	С	32	С	0.095	0.33	0.035	
HFE-7700	565	658	772	576	690	787	с	30	С	0.049	0.55	0.11	
- Net e el de la	In Min. anal			, J									

a Not soluble b No emission c Not obtained

5.	max,abs (TITT)			ax,abs (TTT)			x) 3	10° W -cm -)		Ψ_{F}			
Solvents	1a	1b	1c	1a	1b	1c	1a	1b	1c	1a	1b	1c	
EtOH	570	656	758	588	682	790	38.3	228	180	0.115	0.291	0.16	
acetone	571	655	762	591	677	792	105	182	199	0.109	0.573	0.20	
DCM	а	672	773	a	691	800	а	81	<u>25</u> 4	а	0.59	0.22	
PFOB	572	668	781	584	694	800	73 30%	<u>48 73%</u>	81 59%	<mark>6</mark> 0.17	0.37	0.083	
PFMC	571	659	845	581	688	b	27	27	С	0.044	0.24	b	
PFD	572	658	848	582	690	b	30	27	С	0.024	0.37	b	
HFE-7300	570	659	772	584	685	787	с	32	С	0.095	0.33	0.035	
HFE-7700	565	658	772	576	690	787	с	30	С	0.049	0.55	0.11	
- Not coluble	h Nia anal	anian al		J						•			

a Not soluble b No emission c Not obtained

Impact of Fluorous Tags and Fluorous Solvent on Photostability

Fluorescent Perfluorocarbon Nanoemulsions

Force Measurements in Multicellular Aggregates and Zebrafish Tissues

