Multicomponent Bioluminescence Imaging with a π -Extended Luciferin

Reporter: Xuerong Yu Supervisor: Prof. Zhaochao Xu Date: Aug. 13th 2020

https://dx.doi.org/10.1021/jacs.0c01064

Outline

➢ Background

➤This work

>BRET & Triggerable Dioxetanes

➤Summary

Acknowledgement

Photoluminescence – Jablonski diagram

Chemiluminescence reaction yields one of the reaction products in an **electronic excited state** producing light on falling to the ground state.

$$\Delta G = \Delta H - T \Delta S_{\rm s}$$

- Reaction pathway must be favorable to channel an electronic excited state.
- Photon emission must be a favorable deactivation process

Chemiluminescence reaction yields one of the reaction products in an **electronic excited state** producing light on falling to the ground state.

- $\Delta G = \Delta H T \Delta S_{\rm s}$
- Reaction pathway must be favorable to channel an electronic excited state.
- Photon emission must be a favorable deactivation process

Bioluminescence Reactions

Annu. Rev. Cell Dev. Biol. 1998, 14, 197

Bioluminescence Reactions

Cell. Mol. Life Sci. 2010, 67, 387; Chem. Soc. Rev., 2016, 45, 6048

Bioluminescence Reactions

Cell. Mol. Life Sci. 2010, 67, 387; Chem. Soc. Rev., 2016, 45, 6048

Mechanisms for Light Emission

Figure 1. Normalized bioluminescence emission spectra of Ppy (Panel A) and PplGR (Panel B) catalyzed reactions with LH₂ plus ATP-Mg at pH 8.6 (---) and pH 6.0 (---) and p-DiMeLH₂-AMP at pH 8.6 (-). Conditions used to obtain the spectra are in the Supporting Information.

Mechanisms for Light Emission

McCapra B Twisted intramolecular charge transfer (TICT) mechanism

C Resonance-structure based mechanism

D Microenvironment mechanism

Anionic oxyluciferin

Neutral oxyluciferin

Mechanisms for Light Emission

(i) The **tight** accommodation of both the thiazole and benzothiazole parts of the luciferin inside the LBS to efficiently promote the adenylation and oxidative reactions, **increasing the light emission**

(ii) **Increasing of the cavity size** of the phenol binding pocket, relaxing and polarizing the environment around the phenolate group of excited oxyluciferin **producing red light**

Scientific reports, 2019, 9,8998; Cell. Mol. Life Sci. 2010, 67, 387

Biosynthesis, Recycling, Inhibition

Biosynthesis, Recycling, Inhibition

Representative D-luciferin Analogs

Tissue penetration is high at wavelengths greater than 620 nm.

- 1. sterically modified
- 2. electronically modified
- 3. heteroatom replacement

Disadvantages:

- 1. Emission intensity
- 2. Substrate specifity

Outline

➤ Background

✓ This work

>BRET & Triggerable Dioxetanes

➤Summary

Acknowledgement

Design Logicality

 Substrate specificity: Only luciferases capable of enforcing a geometry should produce light, making them suitable candidates for orthogonal probe development.
Red shifted emission

Parallel engineering to generate orthogonal luciferase-luciferin pairs

Evolutionary Luciferases via RosettaDesign

Screening for Complementary Luciferases

light-emitting colonies

Screening for Complementary Luciferases

The lack of hits for this analog suggested that it could take multiple mutations (>4) to remodel the luciferase active site to compensate for the substrate's flexibility.

Bioluminescence Emission

 \sim 1.7–3.0% of Fluc/D-luc emission in lysate

A similar red shift was observed when G2 was incubated with the native substrate, D-luc, suggesting that the change might not be substrate specific.

Luciferase	Luciferin	Emission maxima (λ_{em})
mut G2 (650 μg)	PhOH-Luc (250 μM)	608 nm
mut G2 (20 μg)	D-luciferin (100 μM)	603 nm
Fluc (6 µg)	D-luciferin (100 μM)	557 nm

Two-component Imaging

Firefly luciferin (Fluc) has been historically challenging: most synthetic analogs react with Fluc and most mutants react with D-luc.

9:1 1:1 1:9 mut G4 relative luminescence (RLU) With the second of the

Four-component Imaging

Outline

➤ Background

➤This work

✓ BRET & Triggerable Dioxetanes

➤Summary

Acknowledgement

Bioluminescence Resonance Energy Transfer (BRET)

Luciferin emission is red-shifted by its conjugation to NIR-emitting dye (BRET)

When the OH group of LH2 is caged, bioluminescence is off. The protecting group (PG) is removed by enzyme or analyte of interest, thus turning bioluminescence on.

Triggerable Dioxetane

General structure and activation pathway of dioxetane-based probes (PG = protecting group).

Triggerable Dioxetane

Figure 10. A) Structure of ${}^{1}O_{2}$ chemiluminescent probe **SOCL-CPP**, which emits green light upon reaction with ${}^{1}O_{2}$. B) Structure of NIR-emitting chemiluminescent probe with an extended π -electron system, which emits NIR light upon reaction with $H_{2}O_{2}$. C) In vivo imaging of endogenous $H_{2}O_{2}$ in the peritoneal cavity of mice during an LPS-induced inflammatory response, using the NIR- $H_{2}O_{2}$ probe.

Outline

- ➤ Background
- ➤This work
- >BRET & Triggerable Dioxetanes
- ✓ Summary
- ✓ Acknowledgement

Summary

Acknowledgement

Thanks for Your Kind Attention! Prof. Zhaochao Xu