Small-Molecule Two-Photon Dyes

- 1. Two-photon materials: Structure-property relationship
- 2. Small-Molecule Two-Photon Probes for Bioimaging Applications

Reporter: Qinglong Qiao Date: 2020.07.23

What are two-photon dyes

Nonlinear optics: induce TP absorption.

S₁ Two-Photon Laser Scanning Fluorescence Microscopy

WINFRIED DENK,* JAMES H. STRICKLER, WATT W. WEBB

Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. The excitation of fluorophores having single-photon absorption in the ultraviolet with a stream of strongly focused subpicosecond pulses of red laser light has made possible fluorescence images of living cells and other microscopic objects. The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photobleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation. This technique also provides unprecedented capabilities for three-dimensional, spatially resolved photochemistry, particularly photolytic release of caged effector molecules.

Application of TPA:

3D optical memory; fluorescence microscopy; nanofabrication ; optical power limiting ; photodynamic therapy...

Different between OPA and TPA advantages and disadvantages

1. TPA cross sections

measured by the NLT method varied by orders of magnitude depending on the pulse width

OPA \mathcal{E} L mol⁻¹ cm⁻¹

TPA

 $\text{TPA}(N_2) \propto \delta I^2$

 δ

 δ TPA in Göppert-Mayer units

 $(1 \text{ GM} = 10^{-50} \text{ cm}^4 \text{ s photon}^{-1} \text{ molecule}^{-1})$

Optics Express, 2008,16, 4029

2. Spatial resolution

OPA efficiency $-- > 1/r^2$ TPA efficiency $-- > 1/r^4$

a Single-photon excitation

S2

SI

S₀

Energy

Different between OPA and TPA advantages and disadvantages

Ideal TP Dyes

donor–bridge–acceptor (D–π–A) dipoles

donor–bridge–acceptor (D– π –A) dipoles donor–bridge–donor (D– π –D) and donor–acceptor–donor (D–A–D) quadrupoles, Octupoles

triphenylamine, paracyclophanes, multi-annulenes, and porphyrins

Chem. Commun., 2009, 153–164 review

Chem. Mater., 1998, 10, 1863–1874

Table 1Photophysical data for $1-10^a$

Cpd	Solvent	$\lambda_{\max}^{(1)}{}^{b}$	$\lambda_{\max}^{\mathrm{fl}}$	Φ^d	$\lambda_{\max}^{(2)}$ e	δ_{\max}^{f}
1	THF	431	583		840 ^h	125
2	Toluene	370	439	0.022	750	120
3	Toluene	396	479	0.025	825	300
4	Toluene	412	525	0.026	850	500
5	MeCN	410			670^{i}	1300
6a	THF	718				1420
7a	THF	691				1500
7b	CH ₂ Cl ₂	850				1200
8a	H ₂ O	391	481	0.82	780	140
9a	H ₂ O	397	482, 551	0.48	780	270
10a	H ₂ O	453	570	0.19	880	350
10b	H ₂ O	457	590	0.050	940	470

Ideal TP Dyes Quadrupolar molecules D– π –D, D–A–D, A– π –A

Stilbene derivatives

Design of Organic Molecules with Large Two-Photon Absorption Cross Sections

Marius Albota, David Beljonne, Jean-Luc Brédas,* Jeffrey E. Ehrlich, Jia-Ying Fu, Ahmed A. Heikal, Samuel E. Hess, Thierry Kogej, Michael D. Levin, Seth R. Marder,* Dianne McCord-Maughon, Joseph W. Perry,* Harald Röckel, Mariacristina Rumi, Girija Subramaniam, Watt W. Webb,* Xiang-Li Wu, Chris Xu

A strategy for the design of molecules with large two-photon absorption cross sections, δ , was developed, on the basis of the concept that symmetric charge transfer, from the ends of a conjugated system to the middle, or vice versa, upon excitation is correlated to enhanced values of δ . Synthesized bis(styryl)benzene derivatives with donor- π -donor, donor-acceptor-donor, and acceptor-donor-acceptor structural motifs exhibit exceptionally large values of δ , up to about 400 times that of *trans*-stilbene. Quantum chemical calculations performed on these molecules indicate that substantial symmetric charge redistribution occurs upon excitation and provide δ values in good agreement with experimental values. The combination of large δ and high fluorescence quantum yield or

Structure–Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives

Mariacristina Rumi,[†] Jeffrey E. Ehrlich,[‡] Ahmed A. Heikal,[‡] Joseph W. Perry,^{*,†,§} Stephen Barlow,[‡] Zhongying Hu,[‡] Dianne McCord-Maughon,[‡] Timothy C. Parker,[†] Harald Röckel,[‡] Sankaran Thayumanavan,^{†,‡} Seth R. Marder,^{*,†,§} David Beljonne,[⊥] and Jean-Luc Brédas^{†,⊥}

J. Am. Chem. Soc. 2000, 122, 9500-9510

Science, 1998, 281, 1653–1656.

Ideal TP Dyes Quadrupolar molecules D– π –D, D–A–D, A– π –A

Fluorene and dihydrophenanthrene derivatives

Nanoscale Push – Push Dihydrophenanthrene Derivatives as Novel Fluorophores for Two-Photon-Excited Fluorescence**

Lionel Ventelon, Sandrine Charier, Laurent Moreaux, Jerome Mertz, and Mireille Blanchard-Desce*

Angew. Chem., Int. Ed., 2001, 40, 2098–2101

Synthesis, Fluorescence, and Two-Photon Absorption of a Series of Elongated Rodlike and Banana-Shaped Quadrupolar Fluorophores: A Comprehensive Study of Structure–Property Relationships

Olivier Mongin,* Laurent Porrès, Marina Charlot, Claudine Katan, and Mireille Blanchard-Desce^{*[a]}

Chem.Eur. J., 2007, 13, 1481–1498

Cpd	Solvent	$\lambda_{\max}^{(1)}{}^{b}$	$\lambda_{\max}^{\mathrm{fl}\ c}$	$arPsi^d$	$\lambda_{\max}^{(2)} e$	δ_{\max}^{f}
28b	Toluene	401	456	0.84	730	1040
29a	DMSO	421	540	0.77	765	1200
29e	DMSO	384		0.92	740	150
29f	Toluene	428	477	0.82	740	2270
29g	Toluene	465	521	0.52	740	2560
30a	DMSO	465	582	0.63	795	530
31a	Toluene	415	457	0.79	740	1260
31f	Toluene	431	480	0.85	730	1920
31g	Toluene	470	525	0.47	880	1530

Ideal TP Dyes Quadrupolar molecules D– π –D, D–A–D, A– π –A

Ideal TP Dyes

Octupolar molecules

2. Small-Molecule Two-Photon Probes for Bioimaging Applications

TP imaging system

Not based on confocal

Chem. Soc. Rev., 2015, 44, 1302--1317

Ideal TP Dyes for imaging

TP absorption cross sections

Chem. Rev. 2015, 115, 5014-5055

QE, Stable

Design of TP probes

Similar with OP probes

5. Two-Photon Probes for Lysosomes and Mito-					
chondria	5020				
6. Two-Photon Probes for Plasma Membranes					
7. Two-Photon Probes for Metal Ions					
7.1. Two-Photon Probes for Sodium Ions	5023				
7.2. Two-Photon Probes for Magnesium lons	5024				
7.3. Two-Photon Probes for Calcium Ions	5025				
7.4. Two-Photon Probes for Copper lons	5026				
7.5. Two-Photon Probes for Zinc Ions	5028				
7.6. Two-Photon Probes for Mercury, Cadmium,					
Lead, and Nickel Ions	5030				
8. Two-Photon Probes for pH					
9. Two-Photon Probes for Thiols and Hydrogen					
Sulfide					
10. Two-Photon Probes for Reactive Oxygen Spe-					
cies (ROS) and Reactive Nitrogen Species (RNS)	5038				
11. Two-Photon Probes for Glucose and ATP					
12. Two-Photon Probes for Nucleic Acids					
13. Two-Photon Probes for Enzymes					
14. Two-Photon Fluorescent Bioconjugates	5047				
15. Two-Photon Probes for Medical Applications	5048				

Chem. Rev. 2015, 115, 5014-5055

TP probes for organelles

Chem. Rev. 2015, 115, 5014–5055

TP probes for organelles

J.Am. Chem. Soc. 2008, 130, 4246. ChemBioChem 2011, 12, 392.

TP probes for metal ions

TP probes for new research

Bong Rae Cho Daejin University

Large stokes shift; near infrared emission;

We advance two-photon microscopy for near-diffraction-limited imaging up to 850 µm below the pia in awake mice. Our approach combines direct wavefront sensing of light from a guidestar (formed by descanned fluorescence from Cy 5.5conjugated dextran in brain microvessels) with adaptive optics to compensate for tissue-induced aberrations in the wavefront. We achieve high signal-to-noise ratios in recordings of glutamate release from thalamocortical axons and calcium transients in spines of layer 5b basal dendrites during active tactile sensing. Nature Methods, 2019, 16, 615-618.

Super-resolution imaging through TP microscopy.

Two-photon absorption standards in the 550-1600 nm excitation wavelength range 17 March 2008 / Vol. 16, No. 6 / OPTICS EXPRESS