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The Schnermann lab uses the tools and concepts of modern organic chemistry to discover
new molecules for cancer diagnosis and therapy. We focus on the development of new drug
delivery and imaging methodologies. In the context of drug delivery, we develop innovative
chemical strategies to deliver bioactive payloads with high precision. In the area of imaging,
we create novel fluorescent molecules with improved properties for in vivo optical imaging
and microscopy. While our studies are enabled by core expertise in organic synthesis and
molecular design, trainees in the lab are engaged in highly interdisciplinary research using
techniques that range from in vitro characterization to in vivo imaging. In addition to our
studies, we embrace a highly collaborative approach with extensive interactions with bath
intramural and extramural investigators.

Link to additional information about Dr Schnermann’s research.
Areas of Expertise
1) complex molecule synthesis, 2) synthetic methodology, 3) near-IR fluorescence,

4) natural product chemistry, 5) drug discovery, 6) drug delivery
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B-mercaptoethanol (B-ME)

SMLM: super-resolution single-molecule localization microscopy

» Reversibly transition to dark transient states in photochemical
reactions (photoswitching)

» Restricting the number of active fluorophores in the illumination

field in a given imaging cycle to achieve super-resolution



» Account for enhanced brightness and extended survival time conveyed

_ by B-ME to Cy3, Cy3B and Cy5B
SMF: Single-molecule fluorescence _ o
» Formation of a non-emissive photoproduct for structurally related dyes

> Good intrinsic signal stability Cy5, Cys.5, and Cy7,as well as Alexa Fluor 647 and 750

» Provide a rationale for restoring the emissive state through a competing

photochemical and thermal pathway

Molecular mechanism
SMLM: super-resolution single-molecule localization microscopy

» Reversibly transition to dark transient states in photochemical

reactions (photoswitching)

n=3 Cy7

» Restricting the number of active fluorophores in the illumination

n=1, R =CH,CO," field in a given imaging cycle to achieve super-resolution
Cy3B

n=2, R=CO,’

Cy5B




The photostabilizing role of aliphatic thiols such as B-ME and 3-MEA results from quenching the

triplet excited state of the fluorophore PeT. Different electron donor have also been reported as

antifading agents
It was also proposed via heavy atom induction of the triplet excited state of Cy5 that photoswitching

arises from the triplet excited state

Quantitative back electron transfer (BeT) takes place when using B-ME
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|. Dark State Genesis from the Triplet Manifold through

Geminate Radical Coml:gination
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Dark State Genesis from the Triplet Manifold through

Geminate Radical Combination
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Formation of the Cy-thiol adduct from the triplet manifold

relies on radical combination within the solvent cage
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|.  Formation of the Cy-thiol adduct from the triplet manifold

relies on radical combination within the solvent cage

4x10°
' Table 1. Lifetimes and Spectral Properties for the Transient
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II. Photoinduced and Acid-Catalyzed Restoration of the Fluorescent State.
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Uncaging of the thiolate moiety and restoration of the chromophore:
(1) Indirect illumination of a closely lying, orange-emitting fluorophore (Cy« kGRC%T

(if) Direct illumination at relatively short wavelengths, 337 nm, 405 nm, 532:g/s;
»
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Question:

’ICy ‘RS

How the Cy5-thiol adduct may undergo photoinduced reactions at wavelengths GRP

where no absorption is detected
Speculation :

Broadening of the electronic transition of the 310 nm peaked Cy5-thiol adduct absorption

Solution :

Building the distribution of off times t_; (the times to Cy5 recovery) from single-molecule intensity—-time trajectories
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Ill. Energy Landscape from DFT Calculations

The fates for all cyanines wasdictated by whether they may effectively undergo PeT with thiolates

to Cy Dyes by fi-ME and Estimated Transition State Energies
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Figure 5. Energy landscape for Cy dye photoreactions. Energy of Cy/f-ME pairs and the computed transition states (gray) for the photoinduced
electron transfer (PeT) and back electron transfer (BeT).

Table 2. Rate Constants for Photoinduced Electron Transfer

for Forward and Back Electron Transfer

dye/f-ME
Cy3
Cy3B
CyS
CySB

kPeT (5_1 M_l)
3.5+ 03 x 10°
1.6 + 0.1 X 10’
9.6 + 0.5 X 10’
1.3 + 0.4 x 10°

ﬂE;__T (kcal/mol)

9.17

12.60
11.39
13.90

ﬁE;T (kcal/mol)

4.73
3.50
5.01
3.93
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Conclusion
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» Thiolates are required in all instances
» |If extended survival times and stable signals, lower oxidation potentials, BeT,

rather than GRC with the thiyl radical is desired
» |f photoswitching toward super-resolution, a thiyl radical able to undergo GRC

would be sought after SMLM is desired



